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For a vertex operator superalgebra V and n,m ∈ (1/2)Z+, let An(V ) := V/On(V )
denote the associative algebra, and An,m(V ) := V/On,m(V ) denote the An(V ) −
Am(V )-bimodule, as constructed by W. Jiang and C. Jiang [10], where On(V ) and 
On,m(V ) are specific subspaces of V . We introduce a novel representation-theoretic 
method for constructing subspaces 𝒪n,m(V ) of V , similar to our previous work 
[8], and set 𝒪n(V ) = 𝒪n,n(V ). We demonstrate that 𝒪n,m(V ) = On,m(V ) and 
𝒪n(V ) = On(V ) through a method that is notably simpler and more straightforward 
compared to the approach detailed in [6] (also see [8]). Moreover, we offer a simpler 
definition for the bimodules An,m(V ), contributing towards the resolution of a 
conjecture proposed by Dong and Jiang [2] regarding superalgebras. Additionally, we 
demonstrate that the An(V )−Am(V )-bimodule An,m(V ) is a quotient of U(V )n−m, 
where U(V ) denotes the universal enveloping algebra of V , employing a method 
distinct from [6] (see also [8]), which is unified and simpler.

© 2025 Elsevier B.V. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction

Let V be a vertex operator superalgebra. To study the representation theory of V , the associative algebra 
A(V ) is constructed by Kac and Wang [11] (see also [13]). A bijective correspondence was established 
between the (isomorphism classes of) irreducible admissible V -modules and irreducible A(V )-modules. For 
an admissible V -module M =

⨁︁
n∈(1/2)Z+

M(n), M(0) becomes an A(V )-module. To study more M(n), 
W. Jiang and C. Jiang [10] (see also [4,3]) constructed associative algebras An(V ) for each n ∈ (1/2)Z+, 
where A0(V ) = A(V ), such that for 0 ≤ k ∈ (1/2)Z ≤ n, M(k) is an An(V )-module. Let U be an 
Am(V )-module which cannot factor through Am−1/2(V ), in [10], a Verma-type admissible V -module M̄(U)
is constructed such that M̄(U)(m) = U and M̄(U)(0) ̸= 0. However, we do not know the explicit form of 
M̄(U)(k) for k ̸= m. To overcome this issue, for n,m ∈ (1/2)Z+, in [10] (see also [5,2]), they constructed 
the An(V ) −Am(V )-bimodule An,m(V ) such that 

⨁︁
n∈(1/2)Z+

An,m(V ) ⊗Am(V ) U is isomorphic to M̄(U).
The bimodule An,m(V ) is defined as the quotient of V by On,m(V ), and the associative algebra An(V ) is 

defined as the quotient of V by On(V ), where On(V ) and On,m(V ) are spans of certain specifically defined 
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products within V . To study the representation-theoretic significance of On(V ) and On,m(V ), we define a 
subspace 𝒪n,m(V ) of V in an extrinsic manner, utilizing representation theory:

𝒪n,m(V ) =
{︁
u ∈ V | om−n(u)|Ωm(M) = 0 for all weak V -modules M

}︁
.

Set 𝒪n(V ) = 𝒪n,n(V ). For the non-super case, Han [6] proved that 𝒪n,m(V ) = On,m(V ) and 𝒪n(V ) =
On(V ). For the twisted case of vertex operator algebra, see our previous work [8]. For any vertex operator 
algebra V , finite automorphism g of V of order T and m,n ∈ (1/T )Z+, we construct a family of associative 
algebras 𝒜g,n(V ) := V/𝒪g,n(V ) and 𝒜g,n(V ) −𝒜g,m(V )-bimodules 𝒜g,n,m(V ) := V/𝒪g,n,m(V ) from the 
point of view of representation theory, where 𝒪g,n(V ) and 𝒪g,n,m(V ) are defined similarly to the non-twisted 
case. We prove that the algebra 𝒜g,n(V ) is identical to the algebra Ag,n(V ) := V/Og,n(V ) constructed by 
Dong, Li and Mason [3], and that the bimodule 𝒜g,n,m(V ) is identical to Ag,n,m(V ) := V/Og,n,m(V ) which 
was constructed by Dong and Jiang [1]. Returning to the case of vertex operator superalgebras, in this 
paper, we show that 𝒪n,m(V ) = On,m(V ) and 𝒪n(V ) = On(V ) through a method that is notably simpler 
and more straightforward compared to the approach detailed in [6] (also see [8]), thus providing a unified 
definition for An(V ) and An,m(V ) (see Theorem 3.2).

Another important associative algebra related to a vertex operator superalgebra V is its universal en
veloping algebra U(V ). This algebra is crucial because any weak V -module M can be naturally regarded 
as a U(V )-module, and the structure of M as a weak V -module is fully determined by its U(V )-module 
structure. When V is a vertex operator algebra, Frenkel and Zhu [5] noted that the Zhu algebra A(V ) is 
isomorphic to a quotient of U(V )0. It has been established in [9] (see also [7,5]) that An(V ) is a quotient 
algebra of U(V )0 for any n ∈ Z+. Additionally, Han [6] demonstrated that the An(V ) − Am(V )-bimodule 
An,m(V ) is a quotient of U(V )n−m for any n,m ∈ Z+. In our previous work [8], we generalized the above 
approach to the twisted case. We also prove that the Ag,n(V ) −Ag,m(V )-bimodule Ag,n,m(V ) is isomor
phic to U(V [g])n−m/U(V [g])−m−1/T

n−m , where U(V [g])k is the subspace of degree k of the (1/T )Z-graded 
universal enveloping algebra U(V [g]) of V with respect to g and U(V [g])lk is some subspace of U(V [g])k. 
Whether in the untwisted case or the twisted case, their strategy is to first prove the algebra isomorphism 
[9,7] and then apply the universal property of Verma-type admissible V -modules to prove the bimodule 
isomorphism [6,8]. Returning to the case of vertex operator superalgebras, in this paper, we demonstrate 
that the An(V ) − Am(V )-bimodule An,m(V ) is a quotient of U(V )n−m employing a method distinct from 
[6] (see also [8]), which is unified and simpler (see Theorem 6.4).

In our previous work [8], we show that all these bimodules Ag,n,m(V ) associated to the vertex opera
tor algebra V can be defined in a simpler way. In this paper, we will do similar things for the bimodules 
An,m(V ) = V/On,m(V ) associated to the vertex operator superalgebra V . For technical reasons, On,m(V )
is defined as the sum of three subspaces O′

n,m(V ), O′′
n,m(V ), and O′′′

n,m(V ). However, it has been conjec
tured that On,m(V ) = O′

n,m(V ) (see [2]). We advance toward this conjecture by proving that O′′′
n,m(V ) is 

superfluous and that O′
n,m(V ) can be replaced by its subspace V s̄ + Ln,m(V ), where m̂− n̂ ̸= s̄. Thus,

On,m(V ) = V s̄ + Ln,m(V ) + O′′
n,m(V ) (see Theorem 4.7),

where m̂− n̂ ̸= s̄. This refinement simplifies the definition of the bimodules An,m(V ).
The organization of this paper is as follows. In Section 2, we review the definitions of vertex operator 

superalgebras, weak modules, and admissible modules. In Section 3, we define a subspace 𝒪n,m(V ) of V
from a representation-theoretic perspective and set 𝒪n(V ) = 𝒪n,n(V ). We demonstrate using a simpler 
approach than [6] (see also [8]) that 𝒪n,m(V ) = On,m(V ) and 𝒪n(V ) = On(V ). In Section 4, we provide 
a simplified definition of the bimodules An,m(V ), making progress toward the conjecture of Dong and 
Jiang [2]. In Section 5, we review the definition of the universal enveloping algebra U(V ) for vertex operator 
superalgebras V . In Section 6, we show that the An(V )−Am(V )-bimodule An,m(V ) is a quotient of U(V )n−m
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for any n,m ∈ (1/2)Z+, employing a method distinct from that used in [6] (see also [8]), which is unified 
and simpler.

2. Basics

We recall definitions of the vertex operator superalgebras, weak modules and admissible modules in this 
section. For k ∈ Z, let k̄ denote the image of k in Z/2Z.

Definition 2.1. A vertex operator superalgebra is a 4-tuple (V, Y,1, ω), where V =
⨁︁

n∈(1/2)Z Vn = V 0 ⨁︁V 1

is a (1/2)Z-graded vector space with dimVn < ∞ for all n and Vn = 0 for n ≪ 0, where V 0 =
⨁︁

n∈Z Vn

and V 1 =
⨁︁

n∈(1/2)+Z Vn. 1 ∈ V0, ω ∈ V2 and Y is a linear map from V to EndV
[︁[︁
z, z−1]︁]︁ sending u ∈ V

to Y (u, z) =
∑︁

n∈Z unz
−n−1 satisfying the following axioms:

(1) Y (1, z) = idV and un1 = δn,−1u for any n ≥ −1 and u ∈ V ;
(2) unv ∈ V i+j for any u ∈ V ī, v ∈ V j̄ and n ∈ Z; for any u, v ∈ V , unv = 0 for n ≫ 0;
(3) the Virasoro algebra relations hold: [L(m), L(n)] = (m − n)L(m + n) + m3−m

12 cV for m,n ∈ Z, where 
cV ∈ C and L(m) = ωm+1 for m ∈ Z; L(0)|Vm

= m idVm
for m ∈ (1/2)Z and Y (L(−1)u, z) = d 

dzY (u, z)
for u ∈ V ;

(4) for any u, v ∈ V,m, l, n ∈ Z, the Jacobi identity holds:

∑︂
i≥0 

(−1)i
(︃
l

i

)︃(︁
um+l−ivn+i − (−1)ũṽ(−1)lvn+l−ium+i

)︁
=

∑︂
i≥0 

(︃
m

i 

)︃
(ul+iv)m+n−i ,

where x̃ = 0 for x ∈ V 0 and x̃ = 1 for x ∈ V 1. Whenever x̃ appears, we always assume that x ∈ V 0̄ or 
V 1̄.

For any n ∈ (1/2)Z, elements in Vn are said to be homogeneous, and if u ∈ Vn, we define wtu = n. As a 
convention, whenever wtu appears, we always assume that u is homogeneous.

Definition 2.2. A weak V -module is a vector space M equipped with a linear map from V to EndM
[︁[︁
z, z−1]︁]︁

sending u ∈ V to Y (u, z) =
∑︁

n∈Z unz
−n−1 satisfying the following axioms:

(1) YM (1, z) = idM ;
(2) for any u ∈ V,w ∈ M , unw = 0 for n ≫ 0;
(3) for any u, v ∈ V,m, l, n ∈ Z, the following Jacobi identity holds on M :

∑︂
i≥0 

(−1)i
(︃
l

i

)︃(︁
um+l−ivn+i − (−1)ũṽ(−1)lvn+l−ium+i

)︁
=

∑︂
i≥0 

(︃
m

i 

)︃
(ul+iv)m+n−i . (2.1)

Definition 2.3. An admissible V -module M is a weak V -module that carries a (1/2)Z+-grading M =⨁︁
n∈(1/2)Z+

M(n) with umM(n) ⊆ M(wtu + n−m− 1) for any u ∈ V,m ∈ Z and n ∈ (1/2)Z+.

3. An(V ) −Am(V )-Bimodules An,m(V )

Let (V, Y,1, ω) be a vertex operator superalgebra. For any weak V -module M and n ∈ (1/2)Z, we define 
a linear map on(·) : V → EndM by on(v) = vwt v−1+n, and set o(·) = o0(·). Note that on(v) = 0 if 
wt v − 1 + n ̸∈ Z. For n,m ∈ (1/2)Z+, define
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Ωn(M) = {w ∈ M | on+i(v)w = 0 for all v ∈ V and 0 < i ∈ (1/2)Z} .
𝒪n,m(V ) =

{︁
u ∈ V | om−n(u)|Ωm(M) = 0 for all weak V -modules M

}︁
.

And set 𝒪n(V ) = 𝒪n,n(V ).
For any n ∈ (1/2)Z, there exists a unique n̂ ∈ {0, 1} such that n = ⌊n⌋ + n̂

2 , where ⌊·⌋ denotes the floor 
function. This decomposition is utilized whenever we refer to n ∈ (1/2)Z. For r, i ∈ {0, 1}, define δi(r) = 1
if i ≥ r and δi(r) = 0 if i < r in this paper. As a convention, set δi(2) = 0 for i = 0, 1.

For u ∈ V r̄, v ∈ V and n,m, p ∈ (1/2)Z, define the product ∗nm,p on V as follows:

u ∗nm,p v =
⌊p⌋ ∑︂
j=0 

(−1)j
(︃⌊m⌋ + ⌊n⌋ − ⌊p⌋ + ε + j

j

)︃
Resz

(1 + z)wtu+⌊m⌋+δm̂(r)−1+r/2

z⌊m⌋+⌊n⌋−⌊p⌋+ε+j+1 Y (u, z)v,

if p̂− n̂ = r̄ and n,m, p ≥ 0, where ε = −1 + δm̂(r) + δn̂(2− r); and u ∗nm,p v = 0 otherwise. Set ∗nm = ∗nm,m, 
∗̄nm = ∗nm,n and ∗n = ∗nn = ∗̄nn. It is easy to see that

1∗̄nmv = v for v ∈ V. (3.1)

Let m,n ∈ (1/2)Z+, define O′
n,m(V ) = V r̄ + span{u ◦nm v | u, v ∈ V } + Ln,m(V ), where m̂− n̂ ̸= r̄, 

Ln,m(V ) = span{(L(−1) + L(0) + m− n)u | u ∈ V s̄ such that m̂− n̂ = s̄} and for u, v ∈ V ,

u ◦nm v =
{︄

Resz (1+z)wt(u)+⌊m⌋

z⌊m⌋+⌊n⌋+2 Y (u, z)v, if u ∈ V 0,

Resz (1+z)wt(u)+⌊m⌋+δm̂(1)−1/2

z⌊m⌋+⌊n⌋+δm̂(1)+δn̂(1)+1 Y (u, z)v, if u ∈ V 1.

Set On(V ) = O′
n,n(V ) and An(V ) = V/On(V ). For any u, a, b, c ∈ V and any p1, p2, p3 ∈ (1/2)Z+, we define 

O′′
n,m(V ) as the linear span of

u ∗nm,p3

(︁(︁
a ∗p3

p1,p2
b
)︁ ∗p3

m,p1
c− a ∗p3

m,p2

(︁
b ∗p2

m,p1
c
)︁)︁

.

Define O′′′
n,m(V ) =

∑︁
p1,p2∈(1/2)Z+

(︁
V ∗np1,p2

O′
p2,p1

(V )
)︁ ∗nm,p1

V , On,m(V ) = O′
n,m(V ) +O′′

n,m(V ) +O′′′
n,m(V )

and An,m(V ) = V/On,m(V ). Take u = 1 and p3 = n, by (3.1), we obtain(︁
a ∗np1,p2

b
)︁ ∗nm,p1

c− a ∗nm,p2

(︁
b ∗p2

m,p1
c
)︁ ∈ O′′

n,m(V ). (3.2)

The subsequent theorem is derived from [10, Theorem 3.2, Theorem 3.5, Theorem 3.7 and Theorem 4.7].

Theorem 3.1. (1) The product ∗n induces an associative algebra structure on An(V ) with the identity element 
given by 1 + On(V ).

(2) For a weak V -module M , Ωn(M) is an An(V )-module induced by the map a ↦→ o(a) for a ∈ V 0̄. If 
M =

⨁︁
k∈(1/2)Z+

M(k) is an admissible V -module, then 
⨁︁

0≤k∈(1/2)Z≤n M(k) ⊆ Ωn(M), and M(k) is an 
An(V )-module for 0 ≤ k ∈ (1/2)Z ≤ n.

(3) For any An(V )-module U , there exists an admissible V -module M̄(U) such that M̄(U)(n) = U .
(4) An,m(V ) is an An(V ) − Am(V )-bimodule for n,m ∈ (1/2)Z+, where the left and right actions of 

An(V ) and Am(V ) are induced by ∗̄nm and ∗nm, respectively.

Let U be an Am(V )-module. Define M(U) =
⨁︁

n∈(1/2)Z+
An,m(V ) ⊗Am(V ) U . Then M(U) is (1/2)Z+

graded with M(U)(n) = An,m(V )⊗Am(V ) U for the convention that M(U)(i) = 0 if i < 0. For u, v ∈ V,w ∈
U , p ∈ Z, and n ∈ (1/2)Z+, set d = n + wtu − p − 1, define a linear map up on M(U)(n) mapping to 
M(U)(d) by up ((v + On,m(V )) ⊗ w) =

(︁
u ∗dm,n v+Od,m(V )

)︁⊗w, if d ≥ 0; and up ((v + On,m(V )) ⊗ w) = 0
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otherwise. Then we form a generating function YM(U)(u, z) =
∑︁

p∈Z upz
−p−1. And M(U) is an admissible 

V -module by [10, Theorem 6.13].

Theorem 3.2. For any n,m ∈ (1/2)Z+, On(V ) = 𝒪n(V ) and On,m(V ) = 𝒪n,m(V ).

Proof. Consider the admissible V -module M(Am(V )) =
⨁︁

k∈(1/2)Z+
Ak,m(V ). By Theorem 3.1 (2), we have

Am,m(V ) = M(Am(V ))(m) ⊆ Ωm(M(Am(V ))).

For any u ∈ 𝒪n,m(V ), by the definition of 𝒪n,m(V ) and Theorem 3.1 (4), we have

0 = om−n(u) (1 + Om,m(V )) = u ∗nm 1 + On,m(V ) = u + On,m(V ),

which implies 𝒪n,m(V ) ⊆ On,m(V ). By [10, Corollary 6.3], On,m(V ) ⊆ 𝒪n,m(V ). Thus 𝒪n,m(V ) =
On,m(V ). Consider admissible V -module M̄(An(V )) from Theorem 3.1 (3), so M̄(An(V ))(n) = An(V ) ⊆
Ωn(M̄(An(V ))) by Theorem 3.1 (2). For any u ∈ 𝒪n(V ), we have

0 = o(u)(1 + On(V )) = u ∗n 1 + On(V ) = u + On(V ),

which implies 𝒪n(V ) ⊆ On(V ), then On(V ) = 𝒪n(V ). □
According to [6, Remark 3.4], it is hard to give a direct proof of On(V ) = 𝒪n(V ) and On,m(V ) = 𝒪n,m(V ). 

However, we provide a simple and direct proof in Theorem 3.2.

4. Refining bimodules

In this section, we will provide a refined definition of the An(V ) −Am(V )-bimodule An,m(V ) using method 
in our previous work [8, Section 6] (see also [6]).

Notation 4.1. For the purposes of this discussion, we adopt the following conventions:

(1) For m ∈ (1/2)Z+ and i ∈ Z, define 
(︃
m

i 

)︃
to be 1 if i = 0, and 0 if i < 0.

(2) For k, l ∈ (1/2)Z, we define the sum 
l∑︁

i=k

ai as 
∑︁

i∈Zk,l
ai, where Zk,l = Z ∩ [l, k], if l ≤ k; and Zk,l =

Z ∩ [k, l] otherwise.
(3) For n ∈ (1/2)Z+, a ∈ V r̄, and b ∈ V , set q = −1 + ⌊n⌋ + δn̂(r) + r/2, define

fi(a, b) = (1 + z)wt a+q

zi
Y (a, z)b for i ∈ Z.

In the subsequent lemmas, Notation 4.1 (2) will be utilized. Setting T = 2 in [8, Lemma 6.2], then we 
have:

Lemma 4.2. Let n ∈ (1/2)Z and l ∈ Z. Then, the following identity holds:

n+1+l∑︂
j=0 

(−1)j
(︃
l

j

)︃ n+1+l−j∑︂
i=0 

(−1)i
(︃−l + i + j − 1

i 

)︃
1 

zi+j
= 1.



6 S. Xu / Journal of Pure and Applied Algebra 229 (2025) 108037 

Lemma 4.3. Let n, k ∈ (1/2)Z+, a ∈ V r̄, b ∈ V and l, j ∈ Z, set q = −1 + ⌊n⌋ + δn̂(r) + r/2, then the 
following identity holds:

a ∗kn,k+1+q+l−j b =
k+1+q+l−j∑︂

i=0 
(−1)i

(︃−l + i + j − 1
i 

)︃
Resz fi+j−l(a, b).

Proof. Observe that ⌊k+1+ q+ l− j⌋ = ⌊n⌋+ ⌊k+ r/2⌋+ δn̂(r)+ l− j and ⌊k⌋−⌊k+ r/2⌋+ δk̂(2− r) = 0. 
The lemma follows from the definition of the product ∗nm,p and Notation 4.1 (2)-(3). □

Let m ∈ (1/2)Z+, set M (m) =
⨁︁

n∈(1/2)Z+
V/O′′

n,m(V ), which is clearly (1/2)Z+-graded with M (m)(n) =
V/O′′

n,m(V ). For u, v ∈ V and p ∈ Z, set d = n+ wtu− p− 1, define a linear map up on M(U)(n) mapping 
to M(U)(d) by up

(︁
v + O′′

n,m(V )
)︁

= u ∗dm,n v + O′′
d,m(V ), if d ≥ 0; and up

(︁
v + O′′

n,m(V )
)︁

= 0 otherwise. By 
(3.2), we know V ∗nm,kO

′′
k,m(V ) ⊆ O′′

n,m(V ) for k ∈ (1/2)Z+. Thus, this action is well-defined. Then we form 
a generating function YM(m)(u, z) =

∑︁
p∈Z upz

−p−1.

Lemma 4.4. Let m ∈ (1/2)Z+. Then

(1) for any u ∈ V and p ∈ Z, up(M (m)(n)) = 0 if p > wtu + n− 1;
(2) YM(m)(1, z) = id;
(3) for any a ∈ V r̄, b ∈ V s̄ and n ∈ (1/2)Z+, we have

(z2 + z0)wt a+q
YM(m) (Y (a, z0) b, z2) = (z0 + z2)wt a+q

YM(m) (a, z0 + z2)YM(m) (b, z2)

or equivalently, for any l ∈ Z,

Resz0 zl0 (z2 + z0)wt a+q
zwt b−q
2 YM(m) (Y (a, z0) b, z2)

=Resz0 zl0 (z0 + z2)wt a+q
zwt b−q
2 YM(m) (a, z0 + z2)YM(m) (b, z2)

on M (m)(n), where q = −1 + ⌊n⌋ + δn̂(r) + r/2.

Proof. (1) follows from the definition of up. And for (2), it is sufficient to show 1p = δp,−1 id on M (m)(n)
for any n ∈ (1/2)Z+. By (1), 1p = 0 on M (m)(n) if p > n− 1. Now considering Z ∋ p ≤ n− 1, then for any 
v ∈ V , set d = ⌊m⌋ + ⌊n− p− 1⌋ − ⌊n⌋, we have

1p(v + O′′
n,m(V )) = 1 ∗n−p−1

m,n v + O′′
n−p−1,m(V )

=
⌊n⌋ ∑︂
i=0 

(−1)i
(︃
d + i

i 

)︃
Resz

(1 + z)⌊m⌋

zd+i+1 Y (1, z)v + O′′
n−p−1,m(V )

=
⌊n⌋ ∑︂
i=0 

(−1)i
(︃
d + i

i 

)︃(︃ ⌊m⌋ 
d + i

)︃
v + O′′

n−p−1,m(V )

=
⌊n⌋ ∑︂
i=0 

(−1)i
(︃⌊m⌋ − p + i−1

i 

)︃(︃ ⌊m⌋ 
⌊m⌋ − p + i−1

)︃
v + O′′

n−p−1,m(V )

=
⌊n⌋ ∑︂
i=0 

(−1)i
(︃ ⌊m⌋ 
p + 1

)︃(︃
p + 1
i 

)︃
v + O′′

n−p−1,m(V )

=δp,−1v + O′′
n−p−1,m(V ) (by Notation 4.1 (1))

=δp,−1(v + O′′
n,m(V )).
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Thus, (2) holds. The idea of the proof of (3) comes essentially from [2, Lemma 5.10] (see also [6, Lemma 
3.9]). For v + O′′

n,m(V ) ∈ M (m)(n), q = −1+⌊n⌋+δn̂(r)+r/2 and let α ∈ {0, 1} be such that ᾱ = n̂− r − s, 
we have

Resz0 zl0 (z2 + z0)wt a+q
zwt b−q
2 YM(m) (Y (a, z0) b, z2) (v + O′′

n,m(V ))

=
∑︂
j∈Z+

(︃
wt a + q

j

)︃
zwt a+wt b−j
2 YM(m) (aj+lb, z2) (v + O′′

n,m(V ))

=
∑︂
j∈Z+

(︃
wt a + q

j

)︃ ∑︂
k∈α/2+Z+

zl+k−n+1
2 (aj+lb)wt a+wt b−j−l−2−k+n (v + O′′

n,m(V ))

=
∑︂

k∈α/2+Z+

zl+k−n+1
2

∑︂
j∈Z+

(︃
wt a + q

j

)︃
(aj+lb) ∗km,n v + O′′

k,m(V )

=
∑︂

k∈α/2+Z+

zl+k−n+1
2

(︁
Resz

(1 + z)wt a+q

z−l
Y (a, z)b

)︁ ∗km,n v + O′′
k,m(V )

=
∑︂

k∈α/2+Z+

zl+k−n+1
2 Resz

(︁
f−l(a, b) ∗km,n v

)︁
+ O′′

k,m(V ) (by Notation 4.1(3))

=
∑︂

k∈α/2+Z+

zl+k−n+1
2

k+1+q+l∑︂
j=0 

(−1)j
(︃
l

j

)︃ k+1+q+l−j∑︂
i=0 

(−1)i
(︃−l + i + j − 1

i 

)︃
× Resz

(︁
fi+j−l(a, b) ∗km,n v

)︁
+ O′′

k,m(V ) (by Notation 4.1 (2)-(3) and Lemma 4.2)

=
∑︂

k∈α/2+Z+

zl+k−n+1
2

k+1+q+l∑︂
j=0 

(−1)j
(︃
l

j

)︃(︁(︁
a ∗kn,k+1+q+l−j b

)︁ ∗km,n v
)︁

+ O′′
k,m(V )

(by Lemma 4.3)

=
∑︂

k∈α/2+Z+
k+1+l+q≥0

zl+k−n+1
2

∑︂
j∈Z+

(−1)j
(︃
l

j

)︃
a ∗km,k+1+q+l−j

(︁
b ∗k+1+q+l−j

m,n v
)︁

+ O′′
k,m(V )

(by (3.2) and Notation 4.1 (1)-(2))

=
∑︂
j∈Z+

∑︂
−n≤i∈−s/2+Z
−l+i+j≥1+q−n

(︃
l

j

)︃
(−1)jzi+j−q

2 a ∗−l+i+j−1−q+n
m,n+i

(︁
b ∗n+i

m,n v
)︁

+ O′′
−l+i+j−1−q+n,m(V )

=
∑︂
j∈Z+

(︃
l

j

)︃
(−1)jawt a+q+l−j

∑︂
−n≤i∈−s/2+Z

zi+j−q
2 bwt b−1−i(v + O′′

n,m(V ))

=
∑︂
j∈Z+

(︃
l

j

)︃
(−1)jawt a+q+l−jz

wt b+j−q
2 YM(m) (b, z2) (v + O′′

n,m(V )) 

= Resz0 zl0 (z0 + z2)wt a+q
zwt b−q
2 YM(m) (a, z0 + z2)YM(m) (b, z2) (v + O′′

n,m(V )),

proving (3). □
As an immediate consequence of Lemma 4.4 and [12, Proposition 2.3.3], we have:

Proposition 4.5. For any m ∈ (1/2)Z+, M (m) is an admissible V -module.
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For u ∈ V r̄ and v ∈ V s̄, if m̂− n̂ = r + s, then it follows from [13] (see also [10]) that

Y (v, z)u ≡ (−1)ũṽ(1 + z)−wtu−wt v−m+nY

(︃
u,

−z 
1 + z

)︃
v mod Ln,m(V ),

where n,m ∈ (1/2)Z+. From [10, Lemma 4.2 and Corollary 4.3], we have:

Lemma 4.6. For u ∈ V r̄ and v ∈ V s̄, if p̂− n̂ = r̄, m̂− p̂ = s̄ and m + n− p ≥ 0, then

u ∗nm,p v − v ∗nm,m+n−p u− Resz(1 + z)wtu−1+p−nY (u, z)v ∈ Ln,m(V ).

In particular, taking p = m and v = 1 we have u ∗nm 1 − u ∈ Ln,m(V ).

Theorem 4.7. We have On,m(V ) = V s̄ + Ln,m(V ) + O′′
n,m(V ) with m̂− n̂ ̸= s̄.

Proof. By Proposition 4.5 and Theorem 3.1 (2), M (m)(m) = V/O′′
m,m(V ) ⊆ Ωm(M (m)). Note that 

On,m(V ) =
(︂
On,m(V ) ∩ V 0̄

)︂⨁︁(︂
On,m(V ) ∩ V 1̄

)︂
by V = V 0̄ ⨁︁V 1̄ and V s̄ ⊆ On,m(V ), where m̂− n̂ ̸= s̄. 

For any u ∈ On,m(V ) ∩ V r̄ = 𝒪n,m(V ) ∩ V r̄ (see Theorem 3.2), then by the definition of 𝒪n,m(V ),

0 = om−n(u)(1 + O′′
m,m(V )) = u ∗nm 1 + O′′

n,m(V ),

that is u ∗nm 1 ∈ O′′
n,m(V ). If m̂− n̂ = r̄, then by Lemma 4.6,

u = u− u ∗nm 1 + u ∗nm 1 ∈ Ln,m(V ) + O′′
n,m(V );

otherwise, u ∈ V s̄, where m̂− n̂ ̸= s̄. Thus by the definition of O′
n,m(V ), On,m(V ) = V s̄ + Ln,m(V ) +

O′′
n,m(V ), where m̂− n̂ ̸= s̄. □

5. Universal enveloping algebra U(V )

In this section, we recall the universal enveloping algebra associated to SVOAs (cf. [6, Section 4]). Let 
V be a vertex operator superalgebra. Let V̂ = L(V )/DL(V ), where L(V ) = V ⊗ C

[︁
t, t−1]︁ and D =

1 ⊗ d 
dt + L(−1) ⊗ 1. Denote by a(m) the image of a ⊗ tm ∈ L(V ) in V̂ . For a, b ∈ V and m, k ∈ Z, define 

the Lie super-bracket as follows:

[a(m), b(k)] =
∞ ∑︂
i=0 

(︃
m

i 

)︃
(aib)(m + k − i).

Then V̂ is a (1/2)Z-graded Lie superalgebra with the degree of a(m) defined to be wt a − m − 1 for 
homogeneous a ∈ V . Let U(V̂ ) be the universal enveloping algebra of the Lie superalgebra V̂ . Then the 
(1/2)Z-grading on V̂ induces a (1/2)Z-grading on U(V̂ ) =

⨁︁
m∈(1/2)Z U(V̂ )m. Following from [6], we set

U(V̂ )km =
∑︂

(1/2)Z∋i≤k

U(V̂ )m−iU(V̂ )i

for (1/2)Z ∋ k < 0 and U(V̂ )0m = U(V̂ )m, then U(V̂ )km ⊆ U(V̂ )k+1/2
m and⋂︂

k∈−(1/2)Z+

U(V̂ )km = 0, 
⋃︂

k∈−(1/2)Z+

U(V̂ )km = U(V̂ )m.
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Thus, 
{︂
U(V̂ )km | k ∈ −(1/2)Z+

}︂
forms a fundamental neighborhood system of U(V̂ )m. Let ˜︁U(V̂ )m be the 

completions of U(V̂ )m, then Ũ(V̂ ) =
⨁︁

m∈(1/2)Z Ũ(V̂ )m. For m ∈ (1/2)Z, define a linear map Jm(·) : V → V̂

by Jm(u) = u(wtu + m− 1). Note that Jm(u) = 0 if wtu + m− 1 ̸∈ Z.

Definition 5.1. The universal enveloping algebra U(V ) of V is the quotient of ˜︁U(V̂ ) by the two-sided ideal 
generated by the relations: 1(i) = δi,−1 for i ∈ Z and

∑︂
i≥0 

(−1)i
(︃
l

i

)︃(︁
Js−i(u)Jt+i(v) − (−1)ũṽ+lJl+t−i(v)Js+i−l(u)

)︁
=

∑︂
i≥0 

(︃
d

i 

)︃
Js+t (ul+iv) (5.1)

for any u, v ∈ V , s ∈ (1/2)ũ + Z, t ∈ (1/2)ṽ + Z, l ∈ Z, where d = s + wtu− l − 1.

Then U(V ) is also a (1/2)Z-graded associative algebra U(V ) =
⨁︁

m∈(1/2)Z U(V )m. Set

U(V )km =
∑︂

(1/2)Z∋i≤k

U(V )m−iU(V )i

for any (1/2)Z ∋ k < 0, then U(V )0/U(V )k0 is an associative algebra, since U(V )k0 is a two-sided ideal of 
U(V )0. Then U(V )n−m/U(V )−m−1/2

n−m is a U(V )0/U(V )−n−1/2
0 − U(V )0/U(V )−m−1/2

0 -bimodule for n,m ∈
(1/2)Z+.

Remark 5.2. (1) From the construction of U(V ) we see that any weak V -module is naturally a U(V )-module 
with the action induced by the map u(m) ↦→ um for any u ∈ V and m ∈ Z.

(2) In the following section we shall still use the same notation Js(u) to denote the image of Js(u) in 
U(V ) or its quotients.

6. Isomorphisms

By [10, Lemma 6.2], we can obtain the following result.

Lemma 6.1. Let u, v ∈ V and m,n, p ∈ (1/2)Z+. Then

Jm−n

(︁
u ∗nm,p v

)︁ ≡ Jp−n(u)Jm−p(v) mod U(V )−m−1/2
n−m .

Before stating the main result, we need to present two more lemmas.

Lemma 6.2. For u, v ∈ V , s ∈ (1/2)ũ + Z, t ∈ (1/2)ṽ + Z and n ∈ (1/2)Z+, we have

Js(u)Jt(v) ≡−
∑︂
i≥1 

(−1)i
(︃
s− (1/2)ũ − ⌊n⌋ − 1

i 

)︃
Js−i(u)Jt+i(v)

+
∑︂
i≥0 

(︃
(1/2)ũ + ⌊n⌋ + wtu

i 

)︃
Js+t

(︁
us+i−(1/2)ũ−⌊n⌋−1v

)︁
mod U(V )−n−1/2

−s−t .

Proof. It follows from setting l = s− k in (5.1), where k = (1/2)ũ + ⌊n⌋ + 1, that

Js(u)Jt(v) = −
∑︂
i≥1 

(−1)i
(︃
s− k

i 

)︃
Js−i(u)Jt+i(v)

+ (−1)ũṽ
∑︂
i≥0 

(−1)s+i−kJs+t−k−i(v)Jk+i(u) +
∑︂
i≥0 

(︃
k − 1 + wtu

i 

)︃
Js+t (us+i−kv) .
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The lemma follows from the observation that the second term on the right hand side lies in U(V )−n−1/2
−s−t . □

The following result generalizes [9, Lemma 3.1] (see also [7, Lemma 5.2]).

Lemma 6.3. Let n,m ∈ (1/2)Z+, for any

w =
∑︂

Jk1

(︁
u1)︁ · · ·Jkq

(uq) ∈ U(V )n−m/U(V )−m−1/2
n−m ,

where uj ∈ V, kj ∈ (1/2)ũj + Z, there exists u(w) ∈ V such that w = Jm−n(u(w)).

Proof. Without loss of generality, we may assume that w = Jk1

(︁
u1)︁ · · ·Jkq

(uq). We proceed induction on 
(q,m− kq), called the pattern of w, to show the lemma. Assume that q ≥ 2 and kq < m + 1/2, since it is 
trivial if q = 1 or kq ≥ m+1/2. Write w as J(q−2)Js(u)Jt(v) with J(q−2) = Jk1

(︁
u1)︁ · · ·Jkq−2

(︁
uq−2)︁ , s =

kq−1, t = kq and u = uq−1, v = uq. Then by Lemma 6.2,

w ≡−
∑︂
i≥1 

(−1)i
(︃
s− (1/2)ũ − ⌊m⌋ − 1

i 

)︃
J(q − 2)Js−i(u)Jt+i(v)

+
∑︂
i≥0 

(︃
(1/2)ũ + ⌊m⌋ + wtu

i 

)︃
J(q − 2)Js+t

(︁
us+i−(1/2)ũ−⌊m⌋−1v

)︁
mod U(V )−m−1/2

n−m .

Note that the pattern of each monomial on the right hand side is strictly less than (q,m− kq). So the lemma 
follows from the induction hypothesis. □
Theorem 6.4. For any n,m ∈ (1/2)Z+, we define a linear map

ϕn,m : An,m(V ) → U(V )n−m/U(V )−m−1/2
n−m

sending u + On,m(V ) to Jm−n(u) + U(V )−m−1/2
n−m . Then ϕn,n is an algebra isomorphism and ϕn,m is an 

An(V ) −Am(V )-bimodule isomorphism.

Proof. We prove the theorem in three steps.
(Step 1) Show that ϕn,m is well-defined. Recall from Theorem 4.7 that On,m(V ) = V s̄ + Ln,m(V ) +

O′′
n,m(V ), where m̂− n̂ ̸= s̄. Then Jm−n(V s̄ + Ln,m(V )) = 0 by the definition of Jm−n(·). By Lemma 6.1, 

we get Jm−n(O′′
n,m(V )) ≡ 0 mod U(V )−m−1/2

n−m . Thus, Jm−n(On,m(V )) ⊆ U(V )−m−1/2
n−m .

(Step 2) Show that ϕn,m is bijective. By Lemma 6.3, ϕn,m is surjective. For u ∈ V , if Jm−n(u) ∈
U(V )−m−1/2

n−m , then by Remark 5.2 (1), om−n(u)|Ωm(M) = 0 for all weak V -modules M , so u ∈ 𝒪n,m(V ) =
On,m(V ) by Theorem 3.2. Thus ϕn,m is injective.

(Step 3) Show that ϕn,n is an algebra homomorphism and ϕn,m is an An(V ) −Am(V )-bimodule homo
morphism. For any u, v ∈ V ,

ϕn,m ((u + On,m(V )) ∗nm (v + Om(V )))

=ϕn,m (u ∗nm v + On,m(V )) = Jm−n (u ∗nm v) + U(V )−m−1/2
n−m

=Jm−n(u)J0(v) + U(V )−m−1/2
n−m =

(︂
Jm−n(u) + U(V )−m−1/2

n−m

)︂
·
(︂
J0(v) + U(V )−m−1/2

0

)︂
,

where the third equality follows from Lemma 6.1. When m = n, An(V ) = An,n(V ) by Theorem 3.2, we 
obtain that ϕn,n is an algebra homomorphism. Then
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ϕn,m ((u + On,m(V )) ∗nm (v + Om(V ))) = ϕn,m (u + On,m(V )) · (v + Om(V )) .

Thus, ϕn,m is a right Am(V )-module homomorphism. Similarly, ϕn,m is a left An(V )-module homomor
phism, completing the proof. □

In the proof of Theorem 6.4, Step 1 does not rely on Theorem 4.7. We can directly prove that ϕn,m is 
well-defined using On,m(V ) = O′

n,m(V )+O′′
n,m(V )+O′′′

n,m(V ). When V is a vertex operator algebra, it was 
proved in [9] (see also [7]) that An(V ) and U(V )0/U(V )−n−1

0 are algebra isomorphic. Subsequently, in [6] 
(see also [8]), it was shown that An,m(V ) and U(V )n−m/U(V )−m−1

n−m are bimodule isomorphic. In this paper, 
we achieve both of these results using a unified and simpler approach (see Theorem 6.4).
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