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1. Introduction

Let V be a vertex operator superalgebra. To study the representation theory of V', the associative algebra
A(V) is constructed by Kac and Wang [11] (see also [13]). A bijective correspondence was established
between the (isomorphism classes of) irreducible admissible V-modules and irreducible A(V)-modules. For
an admissible V-module M = ,,¢(1/2)z, M(n), M(0) becomes an A(V)-module. To study more M(n),
W. Jiang and C. Jiang [10] (see also [4,3]) constructed associative algebras A, (V') for each n € (1/2)Z,
where Ag(V) = A(V), such that for 0 < k € (1/2)Z < n, M(k) is an A,(V)-module. Let U be an
Ay, (V)-module which cannot factor through A, 1 /2(V), in [10], a Verma-type admissible V-module M (U)
is constructed such that M(U)(m) = U and M(U)(0) # 0. However, we do not know the explicit form of
M(U)(k) for k # m. To overcome this issue, for n,m € (1/2)Z,, in [10] (see also [5,2]), they constructed
the A, (V) — A, (V)-bimodule A, ,,,(V') such that @ne(l/Z)Z+ Apm(V)®a,, vy U is isomorphic to M (U).

The bimodule A, ,, (V) is defined as the quotient of V' by O, ,,(V'), and the associative algebra A, (V) is
defined as the quotient of V' by O,,(V), where O,,(V) and O,, ,, (V') are spans of certain specifically defined
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products within V. To study the representation-theoretic significance of O, (V') and O, ,,(V'), we define a
subspace O, 1, (V) of V in an extrinsic manner, utilizing representation theory:

Onm(V) ={u €V | opn(u)lq, ) =0 for all weak V-modules M} .

Set Op(V) = Oy n(V). For the non-super case, Han [6] proved that O, (V) = O,m(V) and O, (V) =
O, (V). For the twisted case of vertex operator algebra, see our previous work [8]. For any vertex operator
algebra V| finite automorphism g of V of order T and m,n € (1/T)Z., we construct a family of associative
algebras Ay (V) = V/Oy (V) and Ay (V) —Ag m(V)-bimodules Ay nm(V) := V/Ogrnm(V) from the
point of view of representation theory, where Oy ,,(V') and Oy ,, (V') are defined similarly to the non-twisted
case. We prove that the algebra A, ,, (V) is identical to the algebra A, (V) := V/O4 (V) constructed by
Dong, Li and Mason [3], and that the bimodule Ay ,, (V) is identical to Ag (V) :=V/Og nm (V) which
was constructed by Dong and Jiang [1]. Returning to the case of vertex operator superalgebras, in this
paper, we show that O, (V) = Oy (V) and O, (V) = O, (V) through a method that is notably simpler
and more straightforward compared to the approach detailed in [6] (also see [8]), thus providing a unified
definition for A, (V) and A, (V) (see Theorem 3.2).

Another important associative algebra related to a vertex operator superalgebra V' is its universal en-
veloping algebra U(V'). This algebra is crucial because any weak V-module M can be naturally regarded
as a U(V)-module, and the structure of M as a weak V-module is fully determined by its U(V')-module
structure. When V' is a vertex operator algebra, Frenkel and Zhu [5] noted that the Zhu algebra A(V) is
isomorphic to a quotient of U(V)g. It has been established in [9] (see also [7,5]) that A, (V) is a quotient
algebra of U(V)g for any n € Z. Additionally, Han [6] demonstrated that the A, (V) — A, (V)-bimodule
A, m (V) is a quotient of U(V),,—y, for any n,m € Z,. In our previous work [8], we generalized the above
approach to the twisted case. We also prove that the Ay, (V)— Ay (V)-bimodule A, ,, (V) is isomor-
phic to U(V[g])n_m/U(V[g]);innzl/T, where U(V[g])r is the subspace of degree k of the (1/7T)Z-graded
universal enveloping algebra U(V[g]) of V with respect to g and U(V[g])} is some subspace of U(V[g]).
Whether in the untwisted case or the twisted case, their strategy is to first prove the algebra isomorphism
[9,7] and then apply the universal property of Verma-type admissible V-modules to prove the bimodule
isomorphism [6,8]. Returning to the case of vertex operator superalgebras, in this paper, we demonstrate
that the A, (V) — A,,(V)-bimodule A, ,,,(V) is a quotient of U(V'),_,, employing a method distinct from
[6] (see also [8]), which is unified and simpler (see Theorem 6.4).

In our previous work [8], we show that all these bimodules Ay, ., (V) associated to the vertex opera-
tor algebra V' can be defined in a simpler way. In this paper, we will do similar things for the bimodules
Apm (V) =V/O,.m (V) associated to the vertex operator superalgebra V. For technical reasons, O, (V)
is defined as the sum of three subspaces O, ., (V), Oy, ,,,(V), and O}, (V). However, it has been conjec-

n,m n,m

tured that O, m(V) = O}, ,,(V) (see [2]). We advance toward this conjecture by proving that O, (V) is

n,m

superfluous and that O}, ,, (V) can be replaced by its subspace V® + Ly, 1 (V), where i — 2 # 5. Thus,
Onm(V) =V + Ly m(V)+ O, (V) (see Theorem 4.7),

where 77 — 71 # 5. This refinement simplifies the definition of the bimodules A,, ,, (V).

The organization of this paper is as follows. In Section 2, we review the definitions of vertex operator
superalgebras, weak modules, and admissible modules. In Section 3, we define a subspace O, (V) of V
from a representation-theoretic perspective and set O, (V) = O, (V). We demonstrate using a simpler
approach than [6] (see also [8]) that Op (V) = Op (V) and O, (V) = 0, (V). In Section 4, we provide
a simplified definition of the bimodules A, ., (V'), making progress toward the conjecture of Dong and
Jiang [2]. In Section 5, we review the definition of the universal enveloping algebra U (V') for vertex operator
superalgebras V. In Section 6, we show that the A, (V)—A,,(V)-bimodule A4,, ,, (V') is a quotient of U(V),,—p,



S. Xu / Journal of Pure and Applied Algebra 229 (2025) 108037 3

for any n,m € (1/2)Z., employing a method distinct from that used in [6] (see also [8]), which is unified
and simpler.

2. Basics

We recall definitions of the vertex operator superalgebras, weak modules and admissible modules in this
section. For k € Z, let k denote the image of k in Z /2Z.

Definition 2.1. A vertex operator superalgebra is a 4-tuple (V,Y,1,w), where V = EBne(l/z)Z V.= VGEB vt
is a (1/2)Z-graded vector space with dimV;, < oo for all n and V,, = 0 for n < 0, where V0 = DB,cz Va
and V1 = ®n€(1/2)+Z Vo1 € Vo, w e Vo and Y is a linear map from V' to End V [[zwz*l]] sending v € V
to Y(u,2) =3, oz unz """ satisfying the following axioms:

(1) Y(1,2) =idy and u,1 =6y, —qu for any n > —1 and u € V;

(2) unv € Vi for any u € Vg,v € Vi and n € Z; for any u,v € V, u,v =0 for n > 0;

(3) the Virasoro algebra relations hold: [L(m), L(n)] = (m — n)L(m + n) + mslgmcv for m,n € Z, where
cy € C and L(m) = w41 for m € Z; L(0)]y, = midy,, for m € (1/2)Z and Y (L(-1)u, z) = LY (u,2)
for u € V;

(4) for any u,v € V;m,l,n € Z, the Jacobi identity holds:

S0 () st = 0D vstins) = 3 () )

i>0 i>0

where & = 0 for z € V9 and Z = 1 for # € V!. Whenever & appears, we always assume that « € VO or
Vi

For any n € (1/2)Z, elements in V,, are said to be homogeneous, and if v € V,,, we define wtu = n. As a
convention, whenever wt u appears, we always assume that u is homogeneous.

Definition 2.2. A weak V-module is a vector space M equipped with a linear map from V' to End M Hz, 2*1]]
sending u € V to Y (u, 2) = >, .z unz~ "' satisfying the following axioms:

(2) for any u € V,w € M, upw = 0 for n > 0;
(3) for any u,v € V,m,l,n € Z, the following Jacobi identity holds on M:

;(—Di (j) (tm1—i0n i — (=1) (= 1) v st itmys) = ; (T) (U1i0) i - (2.1)

Definition 2.3. An admissible V-module M is a weak V-module that carries a (1/2)Z;-grading M =
D.cq/2z, M(n) with up, M(n) € M(wtu+n—m—1) forany u€ V,m € Z and n € (1/2)Z.

3. A, (V)—A,,(V)-Bimodules A,, ,,,(V)
Let (V,Y,1,w) be a vertex operator superalgebra. For any weak V-module M and n € (1/2)Z, we define

a linear map o,(-) : V. — End M by 0,(v) = Uytv—14n, and set o(-) = og(-). Note that o,(v) = 0 if
wtv—1+n¢Z. For n,m € (1/2)Z, define
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Qp(M)={w e M| opti(v)w=0forallveVand 0<ie (1/2)Z}.
Onm(V) ={u €V | omn(u)lq, ) =0 for all weak V-modules M} .

And set O, (V) = O, (V).

For any n € (1/2)Z, there exists a unique f € {0,1} such that n = |n] + 2, where |-] denotes the floor
function. This decomposition is utilized whenever we refer to n € (1/2)Z. For r,i € {0,1}, define ¢;(r) =1
if i > r and §;(r) =0 if ¢ < r in this paper. As a convention, set ¢;(2) =0 for i = 0, 1.

For u € V',v € V and n,m,p € (1/2)Z, define the product 7, , on V as follows:

Lp) ; w m]+8m (r)—147/2
(lm) + o] = lp) +e+ (14 z)terlmieon )
n — 1)
Uy, U= Z%( 1) ( i Res, TS Y (u, 2)v,

=
if p—n =71 and n,m,p >0, where ¢ = —1+ 6,5, (r) +04(2 —7); and u*;;, ;v = 0 otherwise. Set *,, = 7}, .,
*m = %, and x, = x = . It is easy to see that

1%t v =wvforveV. (3.1)

Let m,n € (1/2)Zy, define O}, ,,(V) = V" +span{u o)), v | u,v € V} + Ly, n(V), where 1 —n # 7,
Ly, (V) =span{(L(—1) + L(0) + m — n)u | u € V* such that m — 7 = s} and for u,v € V,

(1+Z)wt(u)+pnj+om(1) 1/2

(14z)Vt(W+1m] . 0

wol v — ReSz WY(U Z)U if u eV 5
; 1

Res: “mrmrenmramm Y(u,2z)v, ifueV?h

Set On (V) = 0;,,,(V) and A, (V) = V/O, (V). For any u,a,b,c € V and any pi, p2,ps € (1/2)Z, we define
O, (V) as the linear span of

W gy (@553 5, ) %502

P1 Cia*]fjfi’lu (b 17773:01 ))

Define O{r{:m(v) = Zpl,pze(l/Q)Z (V *p 0, ( )) m,p1 V O'fl m( ) = O:'L,m(v) + O’/n{,m(v) +O;{:m(v)

P1,P2 p2,P1

and A, (V) =V/O, (V). Take w = 1 and p3 = n, by (3.1), we obtain

(%5, 2 0) ¥y € =@ty (0025, ©) € O (V) (3:2)

m,p1 m,p1

The subsequent theorem is derived from [10, Theorem 3.2, Theorem 3.5, Theorem 3.7 and Theorem 4.7].

Theorem 3.1. (1) The product *,, induces an associative algebra structure on A, (V') with the identity element
given by 1+ O, (V).

(2) For a weak V-module M, Q, (M) is an A, (V)-module induced by the map a — o(a) for a € VO. If
M = @yc(1/2)z, M(k) is an admissible V-module, then @<ye(1/2)z.<n M (k) € Qn(M), and M(k) is an
A, (V)-module for 0 <k e (1/2)Z < n.

(3) For any A, (V)-module U, there exists an admissible V-module M (U) such that M(U)(n) = U.
(4) Apm (V) is an A, (V) — Ay (V)-bimodule for n,m € (1/2)Z., where the left and right actions of

A, (V) and Am(V) are induced by ¥}, and %%, respectively.

m?’

Let U be an Ay, (V)-module. Define M(U) = @,,c(1/2)z. Anm(V) ®a,,() U. Then M(U) is (1/2)Z -
graded with M(U)(n) = Apm(V)®a,,v) U for the convention that M (U)(i) = 0 if i < 0. For u,v € V,w €
U,peZ,and n € (1/2)Z4, set d = n+ wtu — p — 1, define a linear map u, on M(U)(n) mapping to
MU)(d) by up (v + Opm(V)) @ w) = (us, ,, v+ O0aqm(V)) @w, if d > 0; and up, (v + Op (V) @ w) =0
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otherwise. Then we form a generating function Yarwy(u,2) = 32z upz ~'. And M(U) is an admissible
V-module by [10, Theorem 6.13].

Theorem 3.2. For any n,m € (1/2)Z4, O, (V) = O, (V) and Op (V) = Op o (V).

)

Proof. Consider the admissible V-module M (A, (V)) = @j.e(1/2)z, Akm(V). By Theorem 3.1 (2), we have
Am,m(v) = M(An(V))(m) C Qp(M(Am(V))).
For any u € Oy, 1, (V), by the definition of O,, ,,,(V) and Theorem 3.1 (4), we have
0=0m—n() 14+ O0mm(V))=ux 1+ O0pm(V)=u+OpnV),

which implies O, (V) C Opm(V). By [10, Corollary 6.3], Opm(V) € Onm(V). Thus O (V)

Opn.m (V). Consider admissible V-module M(A,,(V)) from Theorem 3.1 (3), so M(A,(V))(n) = A, (V)
Q. (M (A, (V))) by Theorem 3.1 (2). For any u € O,(V), we have

Nl

0=0u)(L+ On(V)) =u*, L+ On(V) =u+ O,(V),
which implies O,,(V) C O,,(V), then O, (V) = O0,(V). O

According to [6, Remark 3.4], it is hard to give a direct proof of O,, (V) = O,(V) and Oy, 1 (V) = Oy i (V).
However, we provide a simple and direct proof in Theorem 3.2.

4. Refining bimodules

In this section, we will provide a refined definition of the A,,(V')—A,,(V)-bimodule A, ,,, (V') using method
in our previous work [8, Section 6] (see also [6]).

Notation 4.1. For the purposes of this discussion, we adopt the following conventions:

(1) For m € (1/2)Z4 and i € Z, define <m) tobe 1ifi=0,and 0if i <O0.
i

!
(2) For k,l € (1/2)Z, we define the sum ) a; as D ;.7  a;, where Zy; = Z N [l, k], if | < k; and Zy,; =
i=k

Z N [k, 1] otherwise.
(3) Forne (1/2)Z,,ac€ V" and be V,set ¢=—1+ [n]| + §4(r) +r/2, define

(1 + Z)wt a+q
Zi

fi(a,b) = Y(a,z)b foric Z.

In the subsequent lemmas, Notation 4.1 (2) will be utilized. Setting T = 2 in [8, Lemma 6.2], then we
have:

Lemma 4.2. Let n € (1/2)Z and |l € Z. Then, the following identity holds:

nfl(—l)j (1> n+§:l—j(_1)i (_z + zl—m - 1) Zz‘lﬂ _

=0
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Lemma 4.3. Let n,k € (1/2)Z4, a € V', b€V and l,j € Z, set ¢ = —1 + |n] + 64(r) + /2, then the
following identity holds:

kt-14q+l—j

-l +i+—1
a *Z,k+1+q+l—j b= Z (-1) ( ) ) Res; fi+;—i(a,b).

: (3
1=0

Proof. Observe that |[k+1+q+1—j] = [n|+|k+7/2]+064(r)+1—jand |k] — [k +7/2] +06;(2—17) = 0.
The lemma follows from the definition of the product *j, , and Notation 4.1 (2)-(3). O

Let m € (1/2)Z+, set M™ =@, 1 )01z, V/O} ,,(V), which is clearly (1/2)Z 4-graded with M ™ (n) =

V/O;, (V). For u,v € V and p € Z, Set d=n+wtu—p—1, define a linear map wu, on M(U)(n) mapping
to M(U)(d) by up (v+ 0y, (V) =uxt, , v+04,.(V),if d > 0; and up, (v + O} ,,,(V)) = 0 otherwise. By
(3.2), we know Vs L OF (V) C O%7m(V) for k € (1/2)Z+. Thus, this action is well-defined. Then we form
a generating function Yy em (u,2) =3 7 upz PL

Lemma 4.4. Let m € (1/2)Zy. Then

(1) foranyueV andp € Z, up(M(m)(n)) =0ifp>wtut+n—1;
(2) Yarom (1,2) =id;
(3) foranya € V', b€ V: and n € (1/2)Z, we have

(ZQ + 220)Wt atq Yorem (Y (a, Zo) b, 2’2) = (Zo + ZQ)Wt ata Yorem (a7 20 + Zg) Yorom (b7 ZQ)
or equivalently, for anyl € Z,

Res., 25 (22 + zo) "ot zgtb_qYM(m (Y (a, z0) b, 22)

=Res,, zé (20 + ZQ)Wt atq z;’t bquM(m) (a,z0 + 22) Yyrom) (b, 22)

on M) (n), where ¢ = —1 + |n] 4+ 64(r) +7/2.
Proof. (1) follows from the definition of u,. And for (2), it is sufficient to show 1, = 6, _;id on M (™ (n)
for any n € (1/2)Z 4. By (1), 1, = 0 on M(™)(n) if p > n — 1. Now considering Z > p < n — 1, then for any
veV,setd=|m]+|n—p—1] —[n], we have

L(v+00,, (V) =1« o+ 00, (V)

Ln]
d+i (14 z)lmd
— Z ( ) RGSZ WY(l, Z)U + ;{71771 m(V)

=S () (L)oot i)
_§ o G [ (I LR L
_% (p+1)(pjl> *Onp1m(V)

=0p, 10+ 05 1.m(V) (by Notation 4.1 (1))
=0p,—1(v + O 1, (V).
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Thus, (2) holds. The idea of the proof of (3) comes essentially from [2, Lemma 5.10] (see also [6, Lemma
3.9]). Forv+ Ol . (V) € M™(n), ¢ = =1+ [n]+6,(r)+r/2 and let a € {0,1} be such that & =/ —r — s,

we have
Ress, 2b (22 + 20) " T 23 " Y yy0m (Y (a, 20) b, 22) (v + Ol (V)

wta + wt a4+wt b—j
= 3 (M) Y (gt 2) (04 O (V)

JEL
wta+q I4+k—n-+1
=X (M) X A @i (04 OV
JEZ 4 kea/2+7Z,
_ wta +
= Z Zé+k n+1 Z ( . q) (aj+lb) *Zw,nv"’_ ;;m(V)
kea/2+Z 4 JEZ 4 J

1 wt a+q
= Z zé““‘"“(Resz %Y(a, z)b) *fnn v+ Oy, (V)

k€a/24+Z
= Z 2R Res, (f=i(a,b) *ﬁ%nv)—i— rom(V) (by Notation 4.1(3))
kea/2+Z
k+1+q+1 k+14+q+i—j S
—n (1 -lHi+ -1
-y ey () ()
k€a/247Z =0 J i—0

x Res; (fitj—i(a,b) *fﬁln v) + O}, (V) (by Notation 4.1 (2)-(3) and Lemma 4.2)

l+k—n+1 S J ! k k "
= Z Z2 Z (71) - ((a *n,k+1+q+l—j b) *m,n ’U) + Ok,m(v)

kEa/24Z =0 J

(by Lemma 4.3)

. 1 B
= Y gpeenh Z(—l)ﬂ(j)a*z,wqw (bt a3 ) L Of (V)

kea/2+Z 4 JEZ 4
k+1+1+q>0

(by (3.2) and Notation 4.1 (1)-(2))

l Lo o )

_ 2 : E : jiti—q —l+it+j—1—qg+n n4+i 1"

- <] (_1) 29 a *m,n—l—i (b *m,’ﬂ ’U) + O*lJriJrj*l*quThm(V)
JEZL —n<i€—s/2+47Z
—l+it+j>1+q—n

AV i
= (-)(—1)jawta+q+lj > BT w10+ 0] (V)

JEZ J —n<i€—s/2+4+7Z
l j wt b+75—q "
= Z ] (_1) Awt a+q+1—j%2 YM(m) (b’ 22) (U + On,m(v))
JEL

= ResZO z(l) (2;0 + zz)wt atq Z;Vt b_qYM(m) (a, zo + ZQ) Yorem) (b, 22) (U + Ox’m(V»,
proving (3). O
As an immediate consequence of Lemma 4.4 and [12, Proposition 2.3.3], we have:

Proposition 4.5. For any m € (1/2)Z, M™) is an admissible V-module.
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For u € V™ and v € V¥, if 7 — 7 = r + s, then it follows from [13] (see also [10]) that

Y (v, 2)u = (—1)"0(1 4 )~ Weumwevmminy <u, 1;—2) v mod Ly, n(V),

where n,m € (1/2)Z. From [10, Lemma 4.2 and Corollary 4.3], we have:

~

Lemma 4.6. Foru c VT andv € VS, ifp—n=7,1m —p=25and m+n —p >0, then

U *Z%p v —v *Zz,ern—p u— Res, (1 + z)Wt“_Hp_”Y(u, 2)0 € Lp m (V).

In particular, taking p=m and v =1 we have u =, 1 —u € Ly, , (V).
Theorem 4.7. We have Op (V) = V® 4 Ly (V) + Oy1 (V) with 7 — 7 # 5.

Proof. By Proposition 4.5 and Theorem 3.1(2), M(™)(m) = V/On, (V) C Q (M), Note that
Opm(V) = (O,L,m(V) N vﬁ) o (Omm(V) N Vi) by V =VO@ V! and V5 C O,(V), where 7 — 71 # 5.
For any u € O (V)N V" = O (V) N VT (see Theorem 3.2), then by the definition of O, ,,,(V),

0 = Om—ﬂ(u)(l + O;:’L,HL(V)) =u *?n 1 + O;:’m(V),

that is u ), 1 € Oy, (V). If m — 7 = 7, then by Lemma 4.6,
u=u—uxnltuxr, 1€ L, (V)+ Ofn{,m(v);

otherwise, u € V¥, where 7 — 7 # 5. Thus by the definition of O}, ,,(V), Opm(V) = V® + Ly (V) +
Oy, m(V), where m —n # 5. O

5. Universal enveloping algebra U (V)

In this section, we recall the universal enveloping algebra associated to SVOAs (cf. [6, Section 4]). Let
V be a vertex operator superalgebra. Let V = L(V)/DL(V), where L(V) = V ® C [t,t"!] and D =
1® 4 + L(—1) ® 1. Denote by a(m) the image of a ® t™ € L(V) in V. For a,b € V and m,k € Z, define
the Lie super-bracket as follows:

o) 40 =3 (7 )@+ k.

Then V is a (1/2)Z-graded Lie superalgebra with the degree of a(m) defined to be wta — m — 1 for
homogeneous a € V. Let U (V) be the universal enveloping algebra of the Lie superalgebra V. Then the
(1/2)Z-grading on V induces a (1/2)Z-grading on U (V) = Dca 2z U(V ). Following from [6], we set

vk, = > UV)maiUV)
(1/2)23i<k

for (1/2)Z 3 k < 0 and U(V)Y = U(V)yn, then U(V)E, C U752 and

(N Uk =o, U vk =tu@)m.
ke—(1/2)Z ke—(1/2)Z
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us, % € — orms a fundamental neighborhood system o y m- Let Y e the
Th UVﬁlk; 1/2)Z4 ¢ f fund 1 hborhood fU(V Let U(V),, be th

completions of U(V),,, then U (V) = D.ca/2z U(V)m. For m € (1/2)Z, define a linear map Jy,(-) : V — V
by Jm(u) = u(wtu 4+ m —1). Note that J,,(u) =0if wtu+m —1¢ Z.

Definition 5.1. The universal enveloping algebra U(V) of V is the quotient of U(V) by the two-sided ideal
generated by the relations: 1(i) = §; _1 for i € Z and

Z(—l)iC) (Jomi () Jrps(0) = (=1)" gy s(0) Jopima(w) = (f) Jsre (uigiv) (5.1)
>0 >0

for any u,v € V, s € (1/2)8 +Z,t € (1/2)° + Z,1 € Z, where d = s + wtu — [ — 1.

Then U(V) is also a (1/2)Z-graded associative algebra U(V') = €D,,¢(1/2)z U(V)m- Set
UVin= > UWV)uiU(V)i
(1/2)Z3i<k

for any (1/2)Z > k < 0, then U(V)o/U(V)§ is an associative algebra, since U (V)% is a two-sided ideal of
U(V)o. Then UV )pem/UV) "2 is a U(V)o/UV)g" 2 = U)o UV)g™ /2 himodule for n,m e
(1/2)Z.

Remark 5.2. (1) From the construction of U (V') we see that any weak V-module is naturally a U(V')-module
with the action induced by the map u(m) — u,, for any u € V and m € Z.

(2) In the following section we shall still use the same notation Js(u) to denote the image of Js(u) in
U(V) or its quotients.

6. Isomorphisms
By [10, Lemma 6.2], we can obtain the following result.
Lemma 6.1. Let u,v € V and m,n,p € (1/2)Z. Then
Jm—n (u o p v) = Jpn(W)Jm—p(v) mod UV), " 1/2,
Before stating the main result, we need to present two more lemmas.

Lemma 6.2. Foru,v €V, s € (1/2)"+Z, t € (1/2)° + Z and n € (1/2)Z ., we have

s == Y (T TN @)

i>1

(1/2)% + |n]| + wtu e
+ Z ( . J )JS+t (Us+i—(1/2)ﬁ—LnJ—1”) mod U(V)*S*tlm'
1>0

Proof. It follows from setting [ = s — k in (5.1), where k = (1/2)% + [n] + 1, that

2 0) == X0 () stwesto)

i>1

+(_1)ﬁﬁZ( ]-)S-H kJSth k— 1( )Jk+l(u)+z<k

i>0 i>0

—1+wtu
1

) Jsrt (uerifk'U) .
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—n—1/2
—s—t .

The lemma follows from the observation that the second term on the right hand side lies in U(V) O

The following result generalizes [9, Lemma 3.1] (see also [7, Lemma 5.2]).

Lemma 6.3. Let n,m € (1/2)Z, for any
w=3"Jiy (u)) -+ T, (@) € UV )uon/UV), 0,
where u/ € V,k; € (1/2)“3 + Z, there exists u(w) € V such that w = Jp—p(u(w)).

Proof. Without loss of generality, we may assume that w = Ji, (ul) -+ J, (u?). We proceed induction on
(g,m — kgq), called the pattern of w, to show the lemma. Assume that ¢ > 2 and ky < m + 1/2, since it is
trivial if ¢ = 1 or kq > m+1/2. Write w as J(q—2)Js(u)J;(v) with J(g—2) = Ji, (u') -+ Jg,_, (uI72),s =
kg—1,t =k, and w = u?"!,v = u? Then by Lemma 6.2,

w=- (T 2" = lml - D)ot 27w esto)

7

1/2)% + |m] + wtu e
+ Z <( . " )J(q = 2)Jspt (“s+¢—(1/2)ﬁ—LmJ—1”) mod U(V)p—m V2.

Note that the pattern of each monomial on the right hand side is strictly less than (g, m — kq). So the lemma
follows from the induction hypothesis. O

Theorem 6.4. For any n,m € (1/2)Z, we define a linear map

b Anm(V) = UV ) /UV), 502
sending u + Op m(V) to Jm—n(u) + U(V);T,,:UQ. Then ¢y, s an algebra isomorphism and @ m is an
A, (V)=A,,(V)-bimodule isomorphism.

Proof. We prove the theorem in three steps.

(Step 1) Show that ¢, ,, is well-defined. Recall from Theorem 4.7 that Oy, (V) = V* + L, (V) +
Oy ,(V), where 7 — A # 5. Then Jyp—n(V* + Lpm(V)) = 0 by the definition of Jy,—p(+). By Lemma 6.1,
we get Jon—n (04 (V) = 0 mod U(V), ™2 Thus, Jy—n(Onm(V)) CUV), ™02,

(Step 2) Show that ¢, is bijective. By Lemma 6.3, ¢, is surjective. For u € V, if J,_,(u) €
U(V);ln,;l/z, then by Remark 5.2 (1), 0y—n(u)|q,, () = 0 for all weak V-modules M, so u € Op (V) =
Opn.m (V) by Theorem 3.2. Thus ¢, ., is injective.

(Step 3) Show that ¢, ,, is an algebra homomorphism and ¢,, ., is an A, (V)—A4,,(V)-bimodule homo-
morphism. For any u,v € V|,
Pn,m (U + Opm(V)) x5, (v+ Om(V)))
=pnm (W 0+ Op (V) = T (wshy 0) + UV 702

n—m

=T (@) o(0) + (V)70 = (Tneaw) + U0, 707 - (o) + (V) ™)

where the third equality follows from Lemma 6.1. When m = n, 4, (V) = A, (V) by Theorem 3.2, we
obtain that ¢, , is an algebra homomorphism. Then
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Onm (U + Onm(V)) #7, (V4 O (V) = onm (U + O (V) - (v + On(V)) -

Thus, @n.m is a right A,,(V)-module homomorphism. Similarly, ¢, is a left A, (V)-module homomor-
phism, completing the proof. O

In the proof of Theorem 6.4, Step 1 does not rely on Theorem 4.7. We can directly prove that ¢, ,, is
well-defined using Oy, (V) = O, ,,,(V)+ Oy . (V) + Oy, (V). When V is a vertex operator algebra, it was
proved in [9] (see also [7]) that A, (V) and U(V)o/U(V)y™ ! are algebra isomorphic. Subsequently, in [6]
(see also [8]), it was shown that A,, ,,,(V) and U(V),_p, /U (V),, ™! are bimodule isomorphic. In this paper,
we achieve both of these results using a unified and simpler approach (see Theorem 6.4).
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