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1. Introduction

The representation theory of vertex operator algebras is quiet different from that of
classical algebras because of the appearance of twisted modules. Among all representa-
tions of a vertex operator algebra, admissible twisted modules are the most important
ones. Recall that for a vertex operator algebra V' and an automorphism g of V' of finite
order T', an admissible g-twisted V-module M is (1/T)Z-graded: M = ;¢ 1,1z, M;
(cf. [7]). Thus, in order to study M it is vital to determine all Hom(M;, M;) for
i,j € (1/T)Z4. In fact, a series of associative algebras A, (V) was introduced (see
[7,8]) for which there is an algebra homomorphism from A, ,(V) to Hom(M;, M;) for
any ¢ < n. And in generally, to study these Hom(M;, M), a series of A, ,,(V)—Ag m(V)-
bimodules Ay ,, (V) for m,n € (1/T)Z4+ was constructed by Dong and Jiang in [4],
for which there is an Ay ,,(V)—Ag »(V)-bimodule homomorphism from A, ., (V) to
Hom(M,,—;, M,,—;) for any 0 <! < min{m,n}. Thus, in this sense bimodules Ay ,, (V)
are generalizations of these associative algebras A, ,, (V) (see [4]).

There are several kinds of associative algebras associated to vertex operator (super)al-
gebras (see [2,6,9,14,18,20,22,23,28]); for the twisted case one can refer to [10,11,19,24,25].

From the construction, the bimodule A, (V) is the quotient of V' by Og n.m (V).
Thus, for better understanding how these Ay, (V) can be used to study admissible
twisted modules, a key step is to study the subspace Og n m (V). Intuitively, Og n m (V)
should be closely related to twisted modules. This is indeed the case when g = 1. It
was proved in [15] that O1 ., (V) can also be defined from representations of V. This
drives us to do so for general automorphisms. In fact we shall consider another sub-
space Oy n.m (V) from the perspective of representation theory and define Ay, ., (V) as
the quotient of V' by Oy n.m (V). In this way, we obtain a series of associative algebras
Agn(V). As a result, Ay, m(V) becomes an Ay, (V)—Ag (V)-bimodule (see Theo-
rem 3.5). And for any Ay ,,(V)-module U, we use a different way from [15] to show
that @B,,c1/mz, Agnm(V) ®4,,.) U is an admissible g-twisted modules with some
universal property (see Theorem 3.7). Based on this universal property we can show
that Ag . m (V) is identical to Ay, m (V) (see Theorem 5.2). Thus, all bimodules can be
reconstructed from the perspective of representation theory. A generalization of twisted
bimodules is constructed in [27] also from this perspective.

It is well known that the most powerful tool in the representation theory of Lie al-
gebras is the universal enveloping algebra. As for a vertex operator algebra V and an
automorphism g, a weak version of such universal enveloping algebra U(V[g]) also exists:
every weak g-twisted V-module is automatically a U(V[g])-module. In fact, these univer-
sal enveloping algebras have close connection with A, ,, (V) and bimodules A, ,, (V).
Frenkel and Zhu [14] pointed out that Zhu'’s algebra can be identified with some quotient
of U(V[1]). It was proved in [17] that all A, ,, (V) for n € Z are some quotients of the
universal enveloping algebra U(V[g]) for the case g = 1 and in [16] for the general finite
automorphism g. Furthermore, the bimodule A4 ,, ., (V') was also proved to be some quo-
tient of U(V[1]) (see [15]). In this present paper, we are going to consider the general g
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and show that the A, ., (V)—Ag n(V)-bimodule Ay, (V) is some quotient of U(V[g])
(see Theorem 5.2).

As mentioned above, the bimodule Ay ,, ., (V') is the quotient of V' by Oy ,, (V). For
some technical reason, Oy (V) is defined as the sum of three subspaces Oy ,, .,.(V),
Oy n.m(V) and OF,, .. (V). But it was conjectured that Oy n.m (V) = Oy ,, ., (V) (see [3]),

that is, O) ,, .. (V)and OV (V) are superfluous. In this present paper we shall approach

g,m,m g,m,m

to this conjecture. More precisely, we shall show that O/g”n (V) is superfluous and

Oy n,m (V) can be replaced by its subspace D, 2 4 moa 1 V° +Ln,m(V), or equivalently,

Ognm(V) = @ Vot Lym(V)+ 0y, (V) (see Theorem 6.8).

sZm—n mod T

In this way, we can refine all these bimodules Ay, ., (V).

The paper is organized as follows: In Section 2, we recall the definition of
Ay n(V)—Agm(V)-bimodule Ay ,, (V') and the construction of the universal admissible
g-twisted V-module M (U). In Section 3, we construct the associative algebras A, ,(V),
the Ag ,,(V)—Ag m(V)-bimodules Ay ,, ., (V') and use these bimodules Ay ,, ., (V') to con-
struct admissible g-twisted V-modules M(U) which have some universal property. In
Section 4, we first recall the definition of universal enveloping algebra U (V]g]) of a vertex
operator algebra V with respect to a finite automorphism g. Then we obtain another
Ay n(V)—Ag m(V)-bimodule U(V[g])n,m/U(V[g]);Tnzl/T and construct universal ad-
missible g-twisted V-modules M(U). In Section 5, we prove that Ay (V) and Ay (V) are
identical as associative algebras; Ag , i (V), Ag.n.m (V) and U(V[g])n_m/U(V[g}),:T,;UT
are isomorphic to each other as Ay ,,(V)—Ay ., (V)-bimodules. The Section 6 is devoted
to refining the definition of the bimodules Ay, m (V).

We assume that the reader is familiar with the basic knowledge on the vertex operator
algebra theory such as the definition of vertex operator algebra (cf. [1], [5], [12], [13], [21])

and the definitions of weak and admissible twisted modules (cf. [7,8]).
2. Ay n(V)—Ag m(V)-bimodule Ay ,, 1 (V)

Let V = ®,¢czV, be a vertex operator algebra and g an automorphism of V' of finite
order T. Then we have the decomposition V = @T LV where Vi = {v e V | gv =
e=2m7i/Ty} (here and only here i represents the imaginary unit). For any n, elements u
in V,, are called homogenous and we define wtu = n. So when wtu appears we always
assume that v is homogenous.

Let M be a weak g-twisted V-module. Recall from [7] (see also [13]) that for u € V",
v eV and w € M, the twisted Jacobi identity

—z21

zo_ld (Zl 2 )YM (u,21) Yar (v, 22) — 2 1(5(

20

T _
_ (21 zo) 5 <z1 Zo> Yar (Y (u, z0) v, 22)

z2 z2

— ) Yar (v, 22) Yar (u, 21)
20

(2.1)
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is equivalent to the weak associativity
(20 + zg)H_% Yar (u, 20 + 22) Yar (v, 22) w = (29 + zo)l+% Yar (Y (u,2z0)v,22)w  (2.2)

where [ is a nonnegative integer, and the commutator formula

1 (75— T = 2
Yar (u,21),Yar (v, 22)] = Res,, 29 | ——— 0 Y (Y (u, 20) v, 22) .

V) V)
(2.3)
In fact, the twisted Jacobi identity can be replaced directly by the weak associativity
(cf. [21,26]). The following theorem is stated in [26], the detailed proof of which is left
in the appendix of the present paper.

Theorem 2.1. [26] Let (V,Y,1) be a vertex algebra and T a positive integer. Let M be a
vector space and let Yy(-,z) be a linear map from V to (End M)[[zT, 2~ T]] such that
Vi (1,2) = idys and Y (v, 2)w € M((z7)) forveV and w € M. Set

Vi={veV|Yy(v,z)we =T M((x)) for any w € M}

for r € Z. Then the twisted Jacobi identity (2.1) foru € V", v € V and w € M is
equivalent to the weak associativity (2.2).

For any n € (1/T)Z, define a linear map o,(-) : V — End M sending each element
v € V t0 Uyt p—14n and by [8] also define

Qp(M) ={w € M | vyty—11iw=0forallve Vandn<ie (1/T)Z}
={weM|opr;(v)w=0forallveVand0<ie (1/T)Z}.

For short, write o, (+) as o(+) if n = 0. And in this paper, for any two formal variables
xz,y and any o« € R, we define

) 7!
ZEZ+

Then one can see that
(x+y)*(z+ y)ﬂ = (z+ y)o‘Jrﬁ for any a, 8 € R.

Proposition 2.2. Let W be a weak g-twisted V-module, u € V", v e VS, per/T +Z,q €
s/T+Z and we W. Letl € Zy be such that

upw =0 forn>1+r/T,
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and k € Z4 such that
vpw =0 forn>k+q.
And also let t € Z be such that
up,v =0 for n>t.
Then
E N
p—1l—r/T\ (l+7r/T
ICROES 35 D1 (it [ (i [ A

i=0 j=0

where N =max{t —p+1+r/T + k,0}.

Proof. By (2.2), 2723Y (u, 21)Y (v, z2)w € W/[[z1,21 71, 22, 207 1]] and following the proof
of [21, Proposition 4.5.7] we see that

up(vgw)
= Res;, Res,, 2722V (u, 21)Y (v, 29)w
= Res;, Res,, (20 + 22)P23Y (u, 20 + 22)Y (v, 22)w
= Res,, Res,, (20 + zz)p*l*T/ng((zo + 20) 7 TY (u, 20 + 22)Y (v, z2)w)
= Res,, Res,, (20 + zz)p*l*T/ng((zg + 20) T TY (Y (u, 20)v, z2)w)

k

Y Y o

= Res., Res., Z (p ; r/ )zg b=r/T 25T (2 + 20) Y (Y (u, 20)0, z)w),
i=0

which immediately gives the desired formula. O
As for these Q,,,(M) we have:
Lemma 2.3. 0,,(v), (M) C Qp_n (M) form,n € (1/T)Z and v € V.

Proof. Without loss of generality we may assume that v € V*. Take any v € V". Then
for 0 <€ (1/T)Z and w € Q,,,(M), according to Proposition 2.2, we can choose proper
k,l, N € Z, and obtain

Om—n+i (U)On (U)U) = Uwt u+m—n+i—1(th v—i—n—lw)
B ~ XN: <wtu+m—n—|—i—1—l—r/T) <Z+T/T>
o p q

X (thyt u+mfn+iflflfr/T*p+q”)wt vn—1+l4r/T+p—g"



[ J. Han et al. / Journal of Algebra 664 (2025) 1-25

P wtu+m-—-n+i—1l—r/T\ (l+r/T
- ZZ p q Om+i(uwtu+t—n+i—1—l—r/T—p+qv)w

proving the lemma. O

For any n € (1/T)Z., there exists an n € {0,1,--- ,T — 1} such that n = |n] +n/T,
where |-] is the floor function. For 0 < r < T — 1, define §;(r) = 1if r <i <T —1 and
9;(r) =01if i < r; and set §;(T") = 0.

Now for u € V",v € V and m,n,p € (1/T)Z, define the product *,, ., on V as
follows:

- sz(_l)i(mew—LpJ—1+6m<r>+6ﬁ<T—r>+z’>

1
=0
(1 4 Z)Wt u—14+|m]|+8m (r)+r/T

Res: e e T

Y (u, 2)v,

it m,n,p€ (1/T)Z4 and p—n =r mod T; and uxy ,, ,v = 0 otherwise. Denote g ,, ,

by *y ., if p=mn and by %7 . if p = m. In particular,
g ,u=u forueV. (2.4)
Note that if g = 1, #7,, , is the same as %], , defined in [3]. And %}, , is, in fact, the

product #g , defined in [8]; in particular, %4 ¢ is the product %4 defined in [7].
For m,n € (1/T)Z, let

Oy . (V) = span{u oy ,, v [ u,v € V} + Ly (V),

where Ly, (V) = span{(L(—1) + L(0) + m —n)u |u € V} and foru e V", v € V,

(1 + Z)wt u—1487 (r)+|m]+r/T

n
wol v =Res, Y (u, 2)v.

9 ZLmJJFL”J +6m (r)+6a (T—r)+1

Again if m = n, then uoj v = u oy, v has been defined in [8]. Then, Oy , (V) =
Ogn(V), Og,o( )= 04(V), A ( ) =V/Ogn(V) and Ag,o(V) = Ag(V) (cf. [7,8]).

Lemma 2.4. For any weak g-twisted V-module M, m,n € (1/T)Zy and a € O ,, . (V),
we have 0py_n(a) =0 on Q. (M).

Proof. It is trivial if a = L(—1)u + (L(0) + m — n)u for some u € V. Assume that a has
the form w oy ,,, v for some u € V" and v € V. Then for any w € Q,,(M), by the twisted
Jacobi 1dent1ty (2.1) we have
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Orm—n (u o m v) w
_ Z (wt u+LmJ+5ﬁ]5T—r)+r/T—1)
k>0

_Z —|m]—|n|-6m (r) 5ﬁ(Tfr)fl) v
k>0

Om—n (Uk—(m ]~ 0] —6(r) 65 (T—1)—1V) W

(uwt utr/T—|n|—6n(T—r)—2—kVwt v—14+m+k+14+57(T—1)—r/T—n/T —

(—1) L]+ [n]+6m (r)+6a (T—r)+1
XUt v4+m/T—r/T—8m (r)—1—kUwt u—1+m+k+r/T+5. (r)_ﬁ,/T) w

But by the definition of £, (M),

Vwt v—14+m+k+1405(T—r)—r/T—n/TW = Uwt yu—14+mt-k+r/T+5 (r)—m/TW = 0 forallk e L.

Thus, 0y,_p (u on v) =0 on Q,,(M), completing the proof. O

g,m

The following theorem is from [8, Theorem 2.4 and Theorem 3.3].

Theorem 2.5. (1) The product ¥, ,, = %4, = *y ,, induces the structure of an associative
algebra on Ay (V') with identity 1 + Oy, (V).

(2) Suppose that M is a weak g-twisted V-module. Then there is a representation of
the associative algebra Ay, (V) on Q,(M) induced by the map a — o(a) = awta—1 for
a € V. Moreover, if M = @yc1/ryz, M(k) is an admissible g-twisted V-module, then
Do<rcn M(k) C Q, (M) and for each k € (1/T)Z such that 0 < k < n, M(k) is an
Ay (V)-module.

For any a,b,c,u € V and any p1,p2,p3 € (1/T)Z4, let OV, . (V) be the linear span

g,n,m
of
U *g g ((a Koopr.p2 O) *¥Gompy € = Q¥ G py (%00, 1) c)).
In particular, by (2.4) we have
(a’ *Z,Pl,Pz b) *Z]meJJl c—ax g m,p2 (b Ig)2m p1 ) € O;’,n m( ) (2'5)
Let
1 !/
Og n, m( ) = Z (V *;1717])2 OQ,P27P1 (V)) *Z,mﬁm 4

p1,p2€(1/T)Z 4

and
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Ogin7m(v) = O;,n,m(v) + Og,n,m(v) + Og,/n,m(v)
Set
Agnm(V) =V/Ognm(V).

Theorem 2.6. [4] Let V' be a wvertex operator algebra and m,n € (1/T)Zy. Then
Agnm(V) is an Ay n(V)—Agm(V)-bimodule such that the left and right actions of
Agn(V) and Ag (V) are induced by x;, ,,, and %'

gm g.m» Tespectively.

Let U be an Ay ,,(V)-module. Set

M(U) = @ Agﬂl,m(v) ®Ag,7n(v) U'
ne(1/T)Z+

Then, M(U) is (1/T)Z4-graded such that M(U)(n) = Agnm(V) ®a,,.v)U. For u €
Vi.per/T+Zandn € (1/T)Z, define an operator u, from M(U)(n) to M(U)(n +
wtu —p — 1) (with the convention that M (U)(i) =0 if i < 0) by

up((v +Ognm(V)® w)
_ {(u *;"";#’;p_l*'” v+ Ogwiu—p-14nm(V)) @w, if wtu—1—p+n >0,
0, if wtu—1—p+n <0,

forveVand weU.

Theorem 2.7. [4] Let U be an Ay . (V)-module. Then

ne(l/T)Z+

is an admissible g-twisted V-module with M(U)(n) = Agpnm(V)®a,,.(v) U and has
the following universal property: for any weak g-twisted V-module W and any Agm(V)-
homomorphism ¢ : U — Qu(W), there is a unique homomorphism ¢ : M(U) — W
of weak g-twisted V-modules which extends ¢. Moreover, if U cannot factor through
Agm-1/7(V), then M(U)(0) # 0.

3. Associative algebras A, ,(V) and Ag ,(V)—Ag,m(V)-bimodules A, ,, . (V)

In this section, we will construct a family of associative algebras A, (V) and a family
of Ag.n(V)—Agm(V)-bimodules Ay, (V) from the perspective of representations, and
show that they share the similar properties as for Ag,,,(V) and Ag.m(V).

For any m,n € (1/T)Z, let

Ognm (V) = {u € V| 0m—n(u)lq,, ) = 0 for any weak g-twisted V-module M} .
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Set

Agnm(V) =V/Ognm(V).
Write Oy nm (V) as Oy (V) and Ay (V) as Agn(V) if m = n. And when g = 1

these Aj p, m (V) were studied in [15].
The following lemma is clear from the definition of Oy, 1m (V).

Lemma 3.1. Oy . (V) C Oy rt,m—1 (V) for (1/T)Z4 > 1 < min{m,n}.
We have the following result from [4, Lemma 5.1].

Lemma 3.2. Let M be a weak g-twisted V-module. Then
Om—n, (u *g mop v) = 0p—n(W)0m—p(v) on Qp, (M) for u,v € V and m,n,p € (1/T)Z+

In particular, w7, 1 —u € Og pm(V).

By the definition of Oy ,, m (V), Lemma 2.3 and Lemma 3.2, it is not difficult to show
the following statements.

Lemma 3.3. Let m,n € (1/T)Z. Then

(1) (a e b) K gy € Ky (b S, ¢) € Ognm(V) for a,b,c € V and
p1,p2 € (1/T)Z . In particular, (a%}y ,,b) *7 ., ¢ = ax; . (b3, ¢) mod Ogpm(V).

(2) Vv >kgrnp OQ’P’m(V> g Og7n)m(v) and O!] n,p V) gmp 14 g Og,n,m(v) fO’f’

€ (1/T)Z+. In particular, Vxy .0y nm(V) C Ognm(V) and Og nm(V) %y, V C

Ognm(V); Ogn(V)xg mV S Ogn m(v) and V xg . Ogm (V) € Ognm (V).

Remark 3.4. (1) It is clear by Lemma 2.4, Lemma 3.2 and Lemma 3.3 that Oy, (V) =

O_:] n, m( ) + O_:]ln m( ) + O_Z]Nn m( ) g Ogﬂl,m(v)' In particular, Og,”(v) g Oga”(v)
(2) Since Ay, (V) is a quotient algebra of Ay ,(V'), every Ay, (V)-module automati-

cally becomes an A, (V')-module.

Theorem 3.5. Let m,n € (1/T)Z4. Then

=« with the iden-

(1) Agn(V) is an associative algebra under the multiplication ¥y , = *y ,

tity 1 + Oy (V).

(2) Agnm(V) is an Ay n(V)=Agm(V)-bimodule with ¥ ,,, the left action and %y ,, the
right action.

(3) Suppose that M is a weak g-twisted V-module. Then there is a representation of
Ag (V) on Q,(M) induced by the linear map u — o(u) for u € V. Moreover, if
M = @yc1/myz, M(k) is an admissible g-twisted V-module, then



10 J. Han et al. / Journal of Algebra 664 (2025) 1-25

B M(k) < Q. (M)

0<k<n
and each M (k) is an Ag n(V)-module for 0 < k < n.

Proof. (1) By Lemma 3.3 (2), Oy (V) is a two-sided ideal of V' under the multiplication

¥ = %y - 1t follows from Lemma 3.3 (1) that this multiplication satisfies the associa-
tivity. Thus, A, (V) is an associative algebra. And by (2.4) and Lemma 3.2 we see that
1+ 0,4, (V) is its identity.

(2) Note that the left action of A, (V') and the right action of Ay, (V) on Ay m (V)
are well defined by Lemma 3.3 (2); and also that the two actions are compatible by
Lemma 3.3 (1). Thus, Ay n,m(V) is an Ay, (V)—Ag m(V)-bimodule.

(3) It is clear from the definition of Oy, (V) that the given representation is well
defined. And this map is an algebra homomorphism by Lemma 3.2, proving the first
statement. The second statement follows from that vyt ,—14:M (k) = 0 for any ¢ > n and

k <mn and that o(v)M (k) C M (k) for any k € (1/T)Z4+. O

The following corollary is an immediate consequence of Lemma 3.1 and Theo-
rem 3.5 (2).

Corollary 3.6. For any l,m,n € (1/T)Z4 such that | < min{m,n}, the identity
map on V induces an epimorphism of Agn(V)—Ag m(V)-bimodules from Ag nm(V) to
Ag.n—1,m—1(V). In particular, the identity map on V induces an epimorphism of algebras

from Ag (V) to Ay n—i(V).

Let U be an Ay, (V)-module. Set

M(U) = @ Ag,n,m(v) ®_Ag,m(V) U.
ne(1/T)Z+

Then M(U) = D,.c(1/ryz, MU)(n) is (1/T)Z-graded with M(U)(n) = Agnm(V)
®A,..(v) U for n € (1/T)Z. Following the construction of M (U) (see Section 2), for
u € V" define the vertex operator Yaw)(u,2) = >, /142 upz P71 with u, being
a linear map from M(U)(n) to M(U)(n + wtu —p — 1) for n € (1/T)Z4 (decreeing
M(U)(k) =0if k < 0) given by

up((v + Ogm,m(v)) ® w) = (u *Zjn‘xj;u*pil v+ Og,m,ntwt u—p—l(V)) Qw

for v € V and w € U. This action is well defined, since for any v € Ay, n(V),a €
Agm(V) and w € U, we have u sp3¥t 2=t Oy 00 (V) € Ogniwtu—p-1,m(V) by
Lemma 3.3 (2), and
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up (v, ) @w) = (ushEvr P (vsla)) @w
= (G ) ) o
= (u *gjn"fflufpfl v)@a-w=uy(v@a-w)

by Lemma 3.3(1). Note that U can also be viewed as an Ay ,,(V)-module by Re-
mark 3.4 (2). Then we can define the linear map

YVnm Ag,n,m(V) @Ay (V) U— Ag,n,m(V) ® Ay m (V) U

sending (u 4+ Og nm(V)) @ w to (u+ Oy n.m(V)) ® w for v € V and w € U, which is
well defined. Note that these v, , for n € (1/T)Z induce the surjective linear map
P M(U) — M(U) such that ¥ (upw) = upp(w) for any p € (1/T)Z,u € V and
w € M(U). Thus, M(U) is a weak g-twisted V-module. Moreover, by definition of the
action of u,, M(U) is an admissible g-twisted V-module. Similarly, one can show that
M(U) shares the same universal property as M(U). Then we arrive at the following
result.

Theorem 3.7. Let U be an Ay, (V)-module. Then

M(U) = @ Ag,n,m(v) ®.Ag,m(V) U
ne(1/T)Z+

is an admissible g-twisted V-module with M(U)(n) = Agn.m(V)®a4,..(v) U satisfying
the following universal property: for any weak g-twisted V-module W and any Ag ., (V)-
morphism ¢ : U — Qu, (W), there is a unique homomorphism ¢ : M(U) — W of weak
g-twisted V -modules which extends ¢. Moreover, M(U)(0) # 0 if U cannot factor through
Agm-1/7(V).

4. The universal enveloping algebra U (V'[g]) of V with respect to g

In this section, we shall first recall the construction of the universal enveloping algebra
U(Vl]g]) of V with respect to g and then use U(V[g]) to construct admissible g-twisted
V-modules with some universal property.

Recall from [7] (see also [1]) the Lie algebra

Vig) = L(V,9)/DL(V. g),

where L(V, g) = @,y V" @ Ct [t,t7'] and D = L(~1) ®id +id ®-ZL. Denote by u(m)
the image of u ® t™ in V[g]. Then the Lie bracket on V[g] is given by

e e
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foru e V" v € V* and m,n € Z. If we define the degree of u(m) to be wtu—m—1, then
Vgl is a (1/T)Z-graded Lie algebra, i.e., V[g] = Dca/rz V[g]m and {V[g]i, V[g]j] C
Viglivs for any i,j € (1/T)Z R

Let U(V[g]) be the universal enveloping algebra of the Lie algebra V[g]. Then the
(1/T)Z-grading on V[g] induces a (1/T)Z-grading on U(V[g]) = Dz UVI[g)m.
Set

UVight, = Y. UVIghm-iU(VIg)

i<k,ic(1/T)Z

and
N UV =0, U UV =UVIghn
ke—(1/T)Z+ ke—(1/T)Z4
Thus, { (VIgDE, | & (1/T)Z+} forms a fundamental neighborhood system of

U(V[g])m. Let U(V[g])m be the completion of U(V[g])m, then

Uvigh):= @ T(Vighnm

me(1/T)Z

is a complete topological ring which allows infinite sums in it.
For each m € (1/T)Z, define a linear map J,,,(-) : V. — V[g] sending u € V" to
u(wtu+m —1) if m € r/T + Z and zero otherwise.

Definition 4.1. The universal enveloping algebra U(V][g]) of V with respect to g is the
quotient of U(V[g]) by a two-sided ideal generated by the following relations:

1(%) = 51'7_1 for ¢ € Z,
.3 _ .
w(i+1),w( +1)] = (i — jwli+j+1) + 5i+j,0%c fori,j € Z,

and

S () i) = (1 i) eria (1)
i>0

fu—1—1
—Z(”Wi )Jsﬂ(ulﬂ-v) forueV,veV” leZseT+Z tef+z
i>0
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It is clear that U(Vg]) = @,,c1/r)z UV [9])m is a (1/T)Z-graded associative alge-
bra. Set

UWVight, = Y. UWVIghm-iUVIg)i
i<k,i€(1/T)Z

for 0> k € (1/T)2Z. Then, U(V[g])n—m/U(V[g]); " " is 2 UVIg))o/U(VIgh)g" " -
U(VIg)o/U(V[g))g™ " -bimodule.

Theorem 4.2. [16] The linear map ¢ : V. — U(V][g])o sending u to Jo(u) induces an
algebra isomorphism ¢, between Ay (V) and U(V[g])o/U(V[gDan_l/T for each n €
(1/7T)Z+.

Remark 4.3. (1) Suppose that M is a weak g-twisted V-module. Then by Theorem 4.2
and Theorem 2.5 (2), there is a representation of U(V[g])o/U(V[g])O_n_l/T on Q,(M)
induced by the linear map a — o(a) = awtq—1 for a € V.

(2) From the construction of U(V][g]), any weak g-twisted V-module is naturally a
U(V]g])-module with the action induced by the map u(m) — uy, for any v € V" and
mer/T+Z.

Theorem 4.2 tells us that Ay (V) can be realized as some quotient of U(V[g])o. And
in Section 5 we are going to make use of the subspace U(V[g])n—m to realize the bimodule
Agnm(V).

Let U be a U(V[g})O/U(V[g])ofmfl/T-module. Set

—m—1)T
M(U) = @ UV IgD)n-m/U(V[g])n / ®U(V[g])o/U(V[g])0_m_1/T U.
ne(1/T)Z,

M(U)(n) = U(V[g])n—m/U(V[g)) /" ® e U

U(VIgDo/U(VIglo
for n € (1/T)Z. Then, M(U)(m) = U as Ay m(V)-modules by Theorem 4.2.

Also following the construction of M(U), we equip M(U) with the vertex operator
maps Ymw)(u, 2) = > e, /717 upz P~ for u € V", where for n € (1/T)Z, the linear
map u, from M(U)(n) to M(U)(n + wtu —p — 1) is defined as follows:

(0 ® w) = ulprw, ifn+wtu—p—12>0,
P o, ifn+wtu—p—1<0,

n—m

for v € U(V[g])n,m/U(V[g})fmfl/T and w € U. Then M(U) is an admissible g-twisted
V-module, since the twisted Jacobi identity follows immediately from the construction
of U(V]g]); and M(U) is generated by M(U)(m).
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Theorem 4.4. Let U be a U(V[g])O/U(V[g])amfl/T—module. Then the admissible g-
twisted V -module

M(U) = @ U(V[g])n*m/U(V[g]);Tnzl/T ®U(V[g])o/U(V[g])gmfl/T U
ne(l/T)Z 4

has the following universal property: for any weak g-twisted V-module W and any
Ay (V)-morphism ¢ : U — Q,,, (W), there is a unique homomorphism ¢ : M(U) — W
of weak g-twisted V-modules which extends ¢. Moreover, if U cannot factor through
Agm—1/7(V), then M(U)(0) # 0.

Proof. Define ¢ : M(U) — W by ¢p(u@w) = ug(w) for u € U(V[g])n_m/U(V[g]);ln,gl/T
and w € U. Note that the action of U(V[g]);Tnzl/T on Q,(W) is trivial by Re-
mark 4.3 (2) and also that

S(u-v@w) = (u-0)p(w) = up(v-w) = Guv-w) for ve U(Vg)o/UV[g])y™ .
Thus, ¢ is well defined. Tt is clear that ¢|yy = ¢ by regarding

U =M(U)(m)=U(VIg)o/UVIgy " " @ sz U.

U(VIgho/U(VIgDo

And for v € V, again by Remark 4.3 (2), we have

¢ (vp(u® w)) = P(v(p)u @ v) = (v(p)u)d(w) = v(p)(up(w)) = v(p)(d(u ® w))

Thus, ¢ is a homomorphism of weak g-twisted V-modules, whose uniqueness follows from
the fact that M(U) is generated by U = M(U)(m). O

5. Isomorphisms

In this section we shall show Oy, (V) = Og.n.m(V) and realize A, ,, (V) as some
quotient of U(V[g])n—m.
Following from [4, Lemma 5.1], we have:

Lemma 5.1. Let u,v € V and m,n,p € (1/T)Z. Then
n — —m—1/T
Jm—n (u *g,m.p v) = Jp—n(u)Jm—p(v) mod U(V]g]), ,, "
The main result of this section is as follows.

Theorem 5.2. (1) Ay (V) = Ag (V) = Agmm(V) and Agnm(V) = Agnm(V) for
anym,n € (1/T)Z.
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(2) The Agn(V)=Agm(V)-bimodules Agnm(V) and UV{g)nm/U(V gD """
are isomorphic for any m,n € (1/T)Z .

Proof. Fix m € (1/T)Z and take U = Ay (V). By Theorem 4.2,

Agm(V) 2 M(U)(m) = U(V[g)o/U(VIg)e ™ " @ m1/r Agm (V).

U(VIgDo/U(VIgho

Now it follows from Theorem 3.5 (3) that the multiplication *',, = ', on V induces
an Ay (V)-module structure on Ay ., (V). In particular, we have Ogm( ) € Og.m(V),
which together with Remark 3.4 (1) gives Oy 1, (V) = Og m(V), 1.6, Agm (V) = Ag (V).
Similarly, when replacing M(U) by M(U) we can obtain Ay, m (V) = Ag (V). That
is, both M(U) and M(U) have the same generating set. Then M (U) = M(U), since
these two modules have the same universal property by Theorems 2.7 and 3.7. Now by
considering M (U)(n) and M(U)(n) we see that Ay » m(V) = Agn.m(V), proving (1).
For convenience, we would identify Ag . m(V)®a4, . (v) Agm(V) with Ay 1 (V), and
identify U(V[g])n—m/U(V[9]);T7;1/T®U(V[g])o/U(V[g])gmfl/TAg,M(V) with U(V[g])n—m/
U(V[g])_T_l/T. It follows from (1) and Theorem 4.2 that the linear map

n—m

e Agmm(V) = U(VIgo/U(VIa))y™ /"
u+ Og,m,m(V) — JO(U) + U(V[g])am—l/T

is an isomorphism of A ,,(V')-modules. Now by Theorem 2.7 and Theorem 4.4, this map
can be extended to an isomorphism of admissible g-twisted V-modules from M(U) to
M(U) such that for any n € (1/T)Z, the linear map

Cnm : Agnn (V) = UV nem/UV[g)) " T
w+ Oy (V) = T () + UV [g]); 70T

n—m

gives an isomorphism of A ,(V')-modules. In fact, this is also a homomorphism of right
Ag m(V)-modules:

nm ((+ O (V) 42 (b4 Ogm(V))) = @ (155 b+ Og (V)
=Tnn (5, b) + U(Vg 1)"“ YT = T () Jo(b) + U (V]g), T
- (Jmfnw) UVIgDa ") - 0+ Oy (V)
= (t+ Og (V) - (0+ Og (V).

where the third equality follows from Lemma 5.1. Thus ¢, ., is an Ay, (V)—Ag m(V)-
bimodule isomorphism, proving (2). O

By Theorem 5.2 and Corollary 3.6, one can obtain the following result.



16 J. Han et al. / Journal of Algebra 664 (2025) 1-25

Corollary 5.3. (1) The identity map on V induces an epimorphism of Ag n(V)—Agm(V)-
bimodules from Ag p m (V) to Agn—im—1(V) forl e (1/T)Zy such that ! < min{m,n}.
(2) Ognn(V) =0y n(V) and
Ognm(V) = {w €V | Jun(w) € UVIg), 7"}

n—m

= {u €V |om—n(u)

Qo (M) = 0 for any weak g-twisted V-module M}

Remark 5.4. The equality Ay, (V) = Ay n(V) and Corollary 5.3 (1) were first proved
in [4].

6. Refining bimodules

In this section we shall refine the definition of the Ay ,(V)—Ag m(V)-bimodule
Agnm(V).

Notation 6.1. Until further notice we shall use the following conventions.

(1) Form € (1/T)Z and i € Z, <m> —1ifi=0,and 0if<0.
1

Zn(l,k ifl <k,
ZNk1 ifl>k.
(3) Forne (1/T)Z+, a € V" and b € V, denote f;(a,b) as follows:

a;, where ZkJ =

l
(2) For k,l S (1/T)Z7 define Z ai = ZiEZkl
i=k '

(14 2)vrata
2

fi(a,b) = Y(a,2)b forieZ,
where ¢ = =1+ |n] + 6z (r) +r/T.

Lemma 6.2. Let n € (1/T)Z andl € Z. Then

nfl(—l)j (g) nﬂif_j(—l)i (_l + Z:—j — 1) Zirj _

§=0 i=0

Proof. This formula follows from [15, Lemma 3.8] if n + 1 4+ 1 > 0 and Notation 6.1 (2)
ifn+1+1<0. O

Lemma 6.3. For k,n € (1/T)Z+, a € V", b€V and j,l € Z, we have

k+1+q+1—j .
axk b= g (—1)¢ il
g:m,k+1+g+1—j ;
i=0

) Res. fitj—i(a,b),

7

where ¢ = —1+ |n| + 05(r) +r/T.
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Proof. Note that [k +1+q+1—j] =|n]+ |k+r/T|+da(r)+1—jand | k] — [k +
7/T|+63(T —r) = 0. Then this lemma follows from the definition of product * ,, ., and
Notation 6.1 (2)-(3). O

Set

MM = P VOV,

ne(1/T)Z,

which is clearly (1/T)Z-graded with Mg(m) (n) = V/Oy ;. m(V). For u € V and p €
(1/T)Z, define the vertex operator map

('U“‘ON

g,n,m

V) = (TR Ly 4+ Y twtu—p1m(V), ifn+wtu—p—12>0,
0, otherwise.

This action is well defined by the proof in [4, Lemma 3.8].

Lemma 6.4. Let m,n € (1/T)Z,. Then

(1) foranyue V" andper/T+Z, up(Mg(m)(n)) =04ifp>wtut+n—1;
(2) YM(m)( z) =id;
(3) for anya € V" and b € V?°, we have

(ZQ +Z )wta+qY

M (Y (a,20)b,22)=(20 + 22 )Wt atqy

M(m) (a, zo + 2'2) Y (b, Zg)

My

or equivalently, for anyl € Z,
Res., 2 (22 + 20) " 479 2300~ qYM(m) (Y (a,20) b, 22)

=Res., 24 (20 + 22) 4T 23007 qYM(m) (a, zo + 22) Yy pom (b, z2)

on Mg(m)(n), where ¢ = —1+ |n] + 0x(r) +r/T.

Proof. (1) follows immediately from the definition of w,. And for (2), it is sufficient to
show 1, = 0, _1id on Mém)(n) for any n € (1/T)Z+. By (1), 1, = 0 on Mém)(n) if
p>n — 1. Now considering Z > p < n — 1, then for any v € V', we have

L+ 00, (V) =1 Py 00 (V)

_ §(_1y<m Flnp Ul
(1+ z)lmd

Res: T

Y(]_ Z)U+Ogn p— 1m(V)
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:%_Di(w Flnmp il +i)

7

.<LmJ+LnlL)mJ1JLnJ+Z>U+ gn—p—1.m(V)

'w<—1>i(“7”f.”“'1)<mJ ) LSRN

i=0 t —pti-
n]
m p+1
B ()T hant
i=0
=0p,—1v + O/g/ n—p—1, m(V) (by Notation 6.1 (1))

- 5 *1(U+O;]In m( ))

Thus, (2) holds.
The idea of the proof of the third statement comes essentially from [4, Lemma 5.10]

(see also [15, Lemma 3.10]). For v + Oy, (V) € MS™((n), g =—1+ |n) +6a(r) +r/T

and let a € {0,...,T — 1} be such that « =n —r — s mod T, we have
Res., 25 (2o + 20)"" 17 23 wib—ay MG (Y (a,20) 0, 22) (v + O ,, (V)

wta + wt at+w
= 3 (M) Y o (048, 2) 04 O (V)

JEZ4
Wta+q I+ k— 1
=X (M) S AT @i scaci (04 O (V)
JEL, k€L +Z,
_ wta+¢q
= 3 A (M) (g 0+ O (V)
keg+Zy JEZ 4 J

n 1 + 2 wt a+q
= Z zl2+k +1 ( Res, %Y(a, z)b) *?m U+ Og k) m(V)
k€F+Zy

= Z 25TR+ Res, (f_i(a,b) gmnv)—i— g km(V) (by Notation 6.1(3))
k€%+Z+
k+1+4+g+l1 k+1+q+l—j . .
-n (! (—l+it+i—1
- e () X ()
k€S+Zy =0 J i=0

x Res. (fi+j—i(a,b) * bmn V) + 0y (V) (by Notation 6.1 (2)-(3) and Lemma 6.2)

k+1+q+1
_ [l
= X A Y () (i) ) + O (V)

Kes1Zy =0 J

(by Lemma 6.3)
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_ I+k—n+1 J k k+1+q+l —J
- Z &) (71) (]) a >kg,m,k:—&-l—‘,—q—‘,—l—j (b g,m,m U) + Og k, m(v)
kEGF+Z JEZ 4
k+1+1+¢>0

(by (2.5) and Notation 6.1 (1)-(2))

_ § E _1\ji.iti—q,  —l+itj—1—g+n n+i

- (] ( 1) 29 a*gmn—H (b >|<gmnv)
JEZy —n<i€—s/T+Z
—l+i+j>14+q—n

+ O” 7l+i+j717q+n,m(v>

= Z ( ) ) Gt atgti— Z Z;Jrjiqbwtbfl*i(“*"Olgl,n,m(v))

JEZ —n<i€—s/T+Z
l .
-y (j)<—1>ﬁawta+q+l_jz2 PITY,  (5,22) (04 Ol (V)
JEZ

= Res., 2} (20 + 22) V041 2300 qYM(m> (a, 20 + 22) Yy om (b, 22) (v + 0 nm(V)),
proving (3). O
As an immediate consequence of Lemma 6.4 and Theorem 2.1 we have:
Proposition 6.5. For any m € (1/T)Z+, Mém) is an admissible g-twisted V-module.
Recall from Section 2 that
Ly m(V)=span{(L(—-1)+ L(0)+m —n)u|ueV}.
From [4, Lemma 3.1] and the definition of Oy ,, ,,,(V'), we know:

Lemma 6.6. For any m,n € (1/T)Z,

B VHLun(V)CO,,.(V).

sZm—n mod T

For any u,v € V, it follows from [28] (see also [4]) that

Y (v, 2)u = (14 z)” Weumwtvmminy <u —Z > vmod Ly, (V).

"1+ 2

Then the following result, in fact, was proved already in [4, Lemma 3.4 and Corollary
3.5].

Lemma 6.7. Foru e V" andv e V*, ifp—n=r mod T,m—p = s mod T and m+n—p >
0, then
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u *Z,m,p v—v *Z,m,men*p U= Resz(l + z)Wtu_1+p_ny(ua z)'U € Ln,m(v)'

In particular, taking p = m and v =1 we have
wxy 1 =1 € Lpm(V).

Theorem 6.8. For any m,n € (1/T)Z,

Ogm,m(V) = @ Ve + Ln,m( )+ Og,n m (V)
sZm—n mod T

In particular, O1 nm(V) = Lym (V) + Of,, (V).

Proof. By Proposition 6.5 and Theorem 3.5 (3), V/OV (V) C Qm(Mém)). Note by

g,m,m
the definition of Oy (V) that Ogpm(V) = @fzol(og,mm(m N V7). For any u €

Ognm(V)NVT = Oy . m(V)NV" (see Theorem 5.2), then by the definition of Oy, m (V),

Ozom—n( )(1+Olglmm(v)): 1+Ognm(v)7
ie.,
1 € O:]l,n m( )

If m —n =7 mod T, then by Lemma 6.7
u_u—u* 1+U*n lean( )+Ognm( );

otherwise, u € @Sszﬁ mod 7 V°- Thus by Lemma 6.6,

Ognm(V)= @ V' 4+ Lowm(V) + 0y, m(V).

s#m—n mod T
And when g = 1, it is clear that Oy, m (V) = Ly m(V) + 07, (V). O
7. Appendix
A detailed proof of Theorem 2.1 is given in this appendix.
Proposition 7.1. The twisted Jacobi identity (2.1) for u € V",v € V* and w € M is

equivalent to: for any w' € M* = Hom(M, C), there exist l € Z, f(z1,22) € C((21,22))
and g(zo, 22) € C((20,22)) such that
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<w’, zl%zz%YM (u,21) Yar (v, 22) w> = f(21,22) (21 — 22)4 , (D1)
<w’, zl%zz%YM (v, 22) Yar (u, 1) w> = f(21,22) (=22 + 21)71 , (D2)
<w/, (22 + 20)T ZQ%YM (Y (u,20) v, 22) w> = g(20,22) (22 + 20) ", (D3)
<w’, (20 + 22)% ZQ%YM (u, 20 + z2) Yar (v, 22) w> = g(20,22) (20 + Zg)_l , (D4)

f 22+ 20,22) 25 :g(zo,ZQ)(22+zo)7l. (D5)

Proof. Assume that there exist | € Z, f(z1, 22) and g(zo, 22) such that (D1)-(D5) hold.
Recall from [5,13] that

e <22 +zo>75 (Zngzo) _ (zl 20)75 <21 zo> (71)
21 21 22 22

for v € C. Thus, (2.1) is equivalent to: for any w’ € M*,

25t (%) <w',zl%22%YM (u,21) Yar (v, 22) w>

2 () (W Vi 020 i 2 )

=271 <22:7120> <w', (22 + Zo)% ijM (Y (u, z0) v, 22) w> ,

which can be rewritten as

2t <Z1 —_ Z2> f(z1,22) (21— 22) ' = P <L+Zl) fz1,22) (=22 + 21) 7"

20

_ zo+ 2z _
=2 15 (2710) f(zz—i—zo,zg)zol

according to (D1)—(D3) and (D5). But this follows immediately from multiplying

r(52)- (22 e (222)
0 0 1

by f (21,22) 25! Therefore, we get (2.1).

Conversely, assume that the commutator formula (2.3) and the weak associativity
(2.2) hold. Moreover, we may choose [ large enough such that z/* 7Yy, (u, z)w involves
only nonnegative integral powers of z. Then, it follows from (2.3) and (7.1) that

[Yar (u,21), Yar (v, 22)] = Res,, Yur <2215 (Zl — ZO) Y (u, z0) 'U,ZQ) <M>

22 22
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— Regzo YM <<2015 (Zl Z_ Z2) _ 2616 <_2:27—’—Zl>> Y ('LL, ZO) 'U,ZQ) <M>
0 20 Z9

= Res,, Yu (zo_lé <Zl — 22> Y (u, 21 — 22)v

,zo_ld <_22 * Zl) Y (u,—20 + zl)v,ZQ> <Zl — ZO)

20 z2

= 22%2;% ZReszo Y (20_16 ('21_22> Y(u7zl _ 22)11

2
n>0 0

—20_15 (ﬂ) Y (u,—2 + Zl)v,z2> <T/T) (ﬁ)
20 n 21

s i(fl)n (""/T> Vi (¥ (21 = 22) (21— )"

20

Sls

—Y(u,—2z0+ 21)(—22 + 21)”)1), 22),

where N is a nonnegative integer such that zV*+1Y (u,2)v € V[[2]]. Thus, there exists
l € Z 4 such that

(21 — 22)' [Yar (u, 21) , Yag (v, 22)] = 0.
Then for any w € M,
(21 — 29)" <w’, zl%szM (u,21) Yar (v, 22) w>
= (=2 +2) <w’, zl%szM (v,22) Yar (u,21) w> ,

which is denoted by f(z1,22). Note that both sides of the above formula involve only
finitely many negative powers of zo and z1. Thus, f(z1,22) € C((21, 22)), proving (D1)
and (D2).

Set g(20,22) = (204 22)" f (20 + 22, 22) 25 " Since 2F Yy (u, 2)w € M[[2]], 2L f (21,
23) € C[[21, 22, 25 ']], we obtain g (29, 22) € C ((20, 22)). Then,

<w’, (20 + 22)% zf Yar (u, 20 + 22) Yar (v, 22) w>

z1=20+z22

= <w/321%22%YM (ua Zl)YM (Usz)w>
f

= f (20 + 29, 22) 25"
z1=20+22

(21,22) (21 — 22) 7"
= (20 + 22)' f (20 + 22, 22) 257" (20 + 22) ™ = g (20, 22) (20 + 22) ",

that is, (D4). Now by (2.2),
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(20 + 22)l <w'7 (20 + Zg)% szM (u, 20 + 22) Yas (v, 22) w>
= (224 20)’ <w', (224 20)T ZQ%YM (Y (u,20) v, 22) w> = g (20, 22),
from which one can deduce (D3) and (D5). O
Taking v = 1 in (2.2) we have
(22 + zo)k+% Y (ezODu, ZQ) w = (z0 + 22)k+% Yar (u, 2o + 22) w, (7.2)
where D is a linear operator on V' defined by D(v) = v_s1 for v € V. Note that we can

choose [ large enough such that 2'* 7Yy (u, z) w € M([[2]]. Tt follows that (7.2) can also
be written as

(22 + Zo)l+% Yur (ezoDu, 22) w=(zo + Zo)l_‘—% Yar (u, 22 + 20) w.
Multiplying both sides by (z2 + zo)_l_% gives
Yur (eZODu, 2’2) w =Y (u, 22 + z) w. (7.3)
Now we are ready to present the proof of Theorem 2.1.
Proof. By Proposition 7.1, it is sufficient to deduce from the weak associativity that

there exist f(z1,22) € C((21,22)) and g(2o, 22) € C((20, 22)) such that (D1)—(D5) hold.
By (2.2) we have

which is denoted by g (zo,22). Clearly, g (z0,22) € C ((20,22)). Then it is easy to see
that (D3) and (D4) hold. Choose [ to be sufficiently large such that z{g(zo,z2) €
Cl[20, 22, 23 '] Set f(z1,22) = (21 — 2)' g (21 — 22, 22) 27!, which lies in C((21,22)).
Then, f (29 + 20,22) 25" = g (20, 22) (22 + 20) ", proving (D5); and

<’w/,21%22%YM (U, Zl)YM ('U,ZQ)UJ>

Sls

ZQT Y (u, 20 + 22) Yar (v, 22) w>

= <w’, (20 + 22)

20=%1—2%2

=g (21— 29, 22) 27 = f(21,22) (21 — 22) 7,
Z0=Z21—Z2

= g (20, 22) (20 + 22)_l

proving (D1).
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By (D1), there exists F'(z1,22) € C ((z1,22)) such that <w' zl%zz%YM (v, z9) Yo (u,
zl)w> = F(21,2) (—22 +21) " and 24F (21, 25) € C[[z1, 27}, 22]]. Then,

/\

1% z0—|—21)TYM (v, —z0 + 21) Yar (u, 21)w>

I
/\

1% Q%YM (v, 22) Yar (u, zl)w>

zo=—20t+21

= F(z1,—20 + 21) %, ~

Thus,

<w', zl% (1 — zo)% Y (Y (v, —20) u, 21) w> =(—20+ zl)l F(z1,—20+ 21) zgl (1 — zo)fl

by the weak associativity. Then,

f 22+ 20,22) 25" (20, 22) (22 + 20) "

/
w', (22 + 20

S

23 Yar (Y (u, 20) v, 22) w > (by (D3))

/

w ,22% 29 + zo)% Yu (Y (v, —20) u, 22 + 20) w> (by (7.3))

=g

(w', (22 + z0)

<w’, (224 20)T ZQ%YM (e*°PY (v, —z20) u, 22) W)
<

<

<w’,z

= (=20 +21) F (21, —20 + 21) 25°") (21 — 20) "

=

(
(21— 20)T Yar (Y (v, —20) u, 21) w>

z1=2%2+%20

z1=2z2+20

= F (22 + 20, 22) 25 -

Thus, F (22 + 20,22) = f (22 + 20, 22) and then F (21, 22) = f (21, 22), that is, (D2). This
completes the proof. O
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